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Haldane like spin chain

• We study a periodic chain of spins, in the 
large spin limit with Hamiltonian: 
!

!

• The coupling constant     is assumed to be 
large, compared to     .  This is the opposite 
limit from what Haldane took in his seminal 
paper:
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ABSTRACT

We consider the one dimensional, periodic spin chain with N sites, similar to the one studied
by Haldane [1], however in the opposite limit of very large anisotropy and small nearest neighbour,
anti-ferromagnetic exchange coupling between the spins, which are of large magnitude s. For a chain
with an even number of sites we show that actually the ground state is non degenerate and given
by a superposition of the two Néel states, due to quantum spin tunnelling. With an odd number of
sites, the Néel state must necessarily contain a soliton. The position of the soliton is arbitrary thus
the ground state is N -fold degenerate. This set of states reorganizes into a band. We show that this
occurs at order 2s in perturbation theory. The ground state is non-degenerate for integer spin, but
degenerate for half-odd integer spin as is required by Kramer’s theorem [17].

Introduction- The study of spin chains has attracted
considerable attention in condensed matter and particle
physics over the years. The breakthrough in this sub-
ject was begun by the work of Bethe and Hulthén [2]
for one-dimensional (D = 1), isotropic Heisenberg spin-12
antiferromagnetic chain. They computed the exact anti-
ferromagnetic ground state and its energy for an infinite
chain. Anderson [3] had worked out the ground state
energies and the spectrum for D = 1, 2, 3 by means of
spin wave theory. The inclusion of an anisotropy term
introduces much interesting physics ranging from quan-
tum computing [4] to optical physics [5]. The resulting
Hamiltonian now possesses two coupling constants which
can compete against each other:

ˆH = �K
NX

i=1

S2
i,z + �

NX

i=1

~Si · ~Si+1 =

ˆH0 +
ˆV (1)

Each spin has magnitude |~Si| = s and we will consider the
large s limit. The two limiting cases are weak anisotropy
� � K and weak exchange coupling � ⌧ K, where �
is the Heisenberg exchange interaction coupling constant
and K is the anisotropy coupling constant. The limit of
weak anisotropy was studied by Haldane [1] in a closely
related model. He demonstrated that in the large spin
limit, s � 1, the system can be mapped to a non-linear
sigma model in field theory with distinguishing effects
between integer and half-odd integer spins. In this let-
ter we will also study the large spin limit, but take the
opposite limit of strong anisotropy.

With � = 0, the ground state is 2

N fold degenerate,
corresponding to each spin in the state Sz = ±s. For
an even number of sites, the model is bi-partite, and the
two fully anti-aligned Neél states are good starting points
to investigate the ground state. For an odd number of
sites, the Néel states are frustrated, they must contain
at least one defect, which are sometimes called domain
wall solitons [6]. There is a high level of degeneracy as
the soliton can be placed anywhere along the cyclic chain

and this degenerate system is the starting point to inves-
tigate the ground state for the case of an odd number
of sites. Frustrated systems are of great importance in
condensed matter physics as they lead to exotic phases
of matter such as spin liquid[7], spin classes[8] and topo-
logical orders [9]. Solitons will also occur on the periodic
chain with even number of sites, but they must occur in
soliton anti-soliton pairs. Villain [6] has studied the one-
dimensional XXZ antiferromagnetic spin chain, however
for spin- 12 close to the Ising limit, where our analyses
are quite parallel. In this letter, we will study the spin
chain with Hamiltonian given by the simple form given in
Eq.(1) with periodic boundary condition ~SN+1 =

~S1, and
we consider K � � > 0, i.e. strong easy-axis anisotropy
and perturbative Heisenberg antiferromagnetic coupling.
The interaction term is denoted by ˆV and the free term
is denoted by ˆH0 in Eq.(1).

Spin wave theory- In our model, we expect the spin
waves to have a large gap. This is because a spin wave
corresponds to introducing a local deviation of the spins
away from their respective highest or lowest values of Sz.
This incurs energy cost controlled by the free Hamitonian
ˆH0. Thus the energy cost is proportional to K. Noticing
that the classical ground states of our model are locally
the fully anti-aligned Neél states, we can introduce small
quantum fluctuations in the spirit of Holstein-Primakoff
transformation [10]. With a straightforward analysis we
obtain that the magnon (spin wave) dispersion is given
by [1]

"q =


"20 + "21 sin

2
(q)

�1/2
(2)

where "0 = 2s
p

K(K + 2�), "1 = 2s� and �⇡  q  ⇡.
As K 6= 0 and in fact large, the magnon dispersion has a
large gap.

Even number of sites and spin coherent state path
integral- First-order degenerate perturbation theory in
the interaction term requires that we diagonalize the in-
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Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically
Quantized Solitons of the One-Dimensional Easy-Axis Neel State

F. D. M. Haldane
Department of Physics, University of Southern California, I.os Angeles, California 90089

(Received 31 January 1983)

The continuum field theory describing the low-energy dynamics of the large-spin one-
dimensional Heisenberg Bntiferromagnet is found to be the O(3) nonlinear sigma model.
When weak easy-axis anisotropy is present, soliton solutions of the equations of motion
are obtained and semiclassically quantized. Integer and half-integer spin systems are
distinguished.
PACS numbers: 75.40.Fa, 03.65.Sq

Nonlinear excitations in one-dimensional mag-
netic systems have received much theoretical at-
tention in recent years, primarily ferromagnetic,
easy-plane, or S =~ systems. ' In this Letter, I
describe a nonlinear field-theory approach to
weakly uniaxially anisotropic easy axis a-ntiferro-
magnets with large spin. Classically, these have
a doubly degenerate ground state with axially
aligned Neel order; topological soliton excita-
tions corresponding to movable domain walls
separating the two possible ground-state configu-
rations are described, and semiclassically quan-
tized. The methods used also reveal the field
theory describing the semiclassical isotropic
Heisenberg antiferromagnet, providing an alter-
native derivation of the recent identification'
(based on a quantum action-angle representation
of spins) of this model with the O(3) nonlinear
sigma model with coupling g =2/hS as S- ~. The
quantization of magnetization carried by the easy-
axis-model solitions also shows up an intrinsic
difference between integer-spin and half-integer-
spin systems, leading to quite different instabili-
ties of the ordered ground state as the anisotropy
vanishes, consistent with the predictions' of quite
different low-energy physics of the isotropic
ground state in the two cases.
I will consider the easy-axis model

H =
I Jl +„1„.5„„+XS„'S„„'+lj, (S „')'],

with S„'=@'S(S+1), and & ~ p so that the classi-
cal ground state is given by S„=~S(-1)"tt, u =+ a.
In the classical limit, the equations of motion
have small-amplitude spin-wave solutions with
the frequency-wave- number relation

(u'(q) =(o,'+ [(u, sin(qa)]', ( q~ & ~~/a, (2)

where a is the lattice spacing, (d, =W~S, and ~,
=&,(& —tt)"'(2 +&—tt)"'. 1 will specialize to the
case of toeak anisotropy cu,/~, «1, when long-
wavelength properties may be studied in the con-
tinuum limit a-0, &,—~, , a =c; the dispersion
relation (2) then develops Lorentz invariance
with limiting velocity &. The elementary collec-
tive excitations (magnons carrying S'=+& ) are ob-
tained by a semiclassical quantization of the
spin waves (e.g. , by a linearized Holstein-Prima-
koff approach); for (crystal) momentum ~ P~
«&~5 /a, the magnon dispersion is

~(P) =[(he )2+ c'P']' ' 0& (x —p)"'«1 (3)

To study the soliton excitations, a fully nonline-
ar treatment of (1) is needed. Following Mikes-
ka, ' I use the classical angle-variable represen-
tation

S„=(- 1)"kS(sin&„cosp„, sin&„sin@„,ense„).
The classical equations of motion are easily ob-
tained from (1) in terms of these variables by us-
ing the Poisson-bracket algebra (@„,S„'j=5„„,
q'„=fq'„,H], etc. :

&„=—~~,(- 1)"g, [sine„+, sin(p„„- p„)],
0, =—p~&(- 1)"2 [(1+~)cos0„„-g cos&„—cot&„sin&„„cos(g„„—p„)].

(4a)

(4b)

To make progress with these equations, I assume as in Ref. 3 that ~„and p„vary slowly with n, with a
small superimposed staggered-fluctuation component; this should be valid at low energies and weak
anisotropy ~,«/ac:

9„=6(x)+a(- 1)"a(x), y„=y(x) + a(- 1)"P(x), x =na.
8(x) and p(x) are slowly varying angle fields, while n(x) and P(x) are small staggered-fluctuation fields,
chosen to have dimensions of density. The variables on neighboring sites can be expressed through a
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• For zero coupling, the ground state is          
fold degenerate, with each spin being fully 
up or fully down along the z axis. 

• With the added exchange interaction, the 
spin chain tries to assume a Néel state. 

• For an even number of spins, this is possible 
without frustration, but for an odd number 
of spins, there must be at least one defect in 
the Néel order. 

• We find the low lying excitations of the 
even and odd spin cases remarkably 
different.

2N

3



The spin coherent states path 
integral

• We use the path integral to compute 
transition amplitudes: 
!

!

• Where the Euclidean action is given by:

2

teraction Hamiltonian term in the 2

N degenerate sub-
space. The interaction can be written as

ˆV = �
NX

i=1


Sz
i · Sz

i+1 +
1

2

�
S+
i S�

i+1 + S�
i S+

i+1

��
(3)

which has a diagonal term and a term which induces tran-
sitions of spin pairs to states which are no longer in the
highest or lowest weight states. Thus, at first-order, only
the diagonal term in the interaction has a nonzero matrix
element within the degenerate subspace. The two Neél
states have the lowest energy with EAF = (�K � �)Ns2

and the two fully aligned ferromagnetic states have the
highest energy with EF = (�K + �)Ns2. The energies
of the intermediate states lie between EAF and EF . The
energies of the two Neél states are corrected in each order
of perturbation theory, however the correction is identical
for each, thus they remain degenerate. However at order
2s

�
N
2

�
the non-diagonal part of the interaction flips N/2

pairs of spins, causing each spin to reverse. This trans-
forms the Néel states into each other, and thus at this
order in perturbation theory, we must diagonalize the ef-
fective Hamiltonian. As there are only two degenerate
states, call them | ±pi, this correspond simply to a 2⇥ 2

matrix and the ground state energy splitting has the form
[11]

� = 2 h�p| ˆVAsN�1|pi (4)

where AsN�1
=

⇣
Q

Es�Ĥ0

ˆV
⌘sN�1

+ O(QV )

sN�2, Es =

�KNs2 and Q = 1� | pihp | � | �pih � p | is the
operator projecting to the complement of the degenerate
sub-space. With a bit of work, the energy splitting can be
obtained from Eq.(4), however we will obtain the desired
result via the spin coherent state path integral formalism
[12, 13, 15]. In this formalism, each spin is represented
by a unit vector, and the corresponding (Euclidean) La-
grangian is given by

LE = is
X

i

˙�i(1� cos ✓i) +K
X

i

sin

2 ✓i

+ �
X

i

[sin ✓i sin ✓i+1 cos(�i � �i+1) + cos ✓i cos ✓i+1].

(5)

The first term is the usual Wess-Zumino [14] term which
arises from the non-orthogonality of spin coherent states
while the other two terms correspond to the anisotropy
energy and the exchange energy. Quantum amplitudes
are obtained via the path integral. Solutions of the
(Euclidean) classical equations of motion give informa-
tion about quantum tunnelling amplitudes. The classical
equation of motion for �i yields

is
d(1� cos ✓i)

d⌧
= sin ✓i�1 sin ✓i sin(�i�1 � �i)

� sin ✓i sin ✓i+1 sin(�i � �i+1) (6)

Similar expression holds for the equation of motion for
✓i. Summing both sides of this equation one obtains

is
X

i

d(1� cos ✓i)

d⌧
= 0 )

X

i

cos ✓i = l = 0 (7)

which corresponds to the conservation of z-component of
the total spin

P
i S

z
i , as the full Hamiltonian, Eq.(1), is

invariant under rotations about the z axis. A particular
solution of Eq.(7) is ✓2k�1 ⌘ ✓, and ✓2k = ⇡ � ✓, k =

1, 2 · · · , N . Hence the effective Lagrangian (adding an
irrelevant constant) becomes

Leff
E = is

NX

k=1

˙�k � is cos ✓

N/2X

k=1

(

˙�2k�1 � ˙�2k)

+

NX

i=1


K + �[1 + cos(�i � �i+1)]

�
sin

2 ✓ (8)

= isN ˙

�� isN

2

˙� cos ✓ + Ueff (9)

where Ueff = N [K + �(1 + cos�)] sin2 ✓ and the last
equality is obtained by making the further simplifying
ansatz �i � �i+1 = (�1)

i+1� effectively reducing to a
single spin problem. The instanton that we will find must
go from ✓ = 0 to ✓ = ⇡. Conservation of energy implies
@⌧Ueff = 0, which then must vanish, Ueff = 0, since it
is so at ✓ = 0. This implies

cos� = �
✓
K

�
+ 1

◆
⌧ 1 (10)

since sin ✓(⌧) 6= 0 along the whole trajectory. Thus �
is a complex constant which can be written as � = ⇡ +

i�I similar to that of two spin case [15]. The classical
equation of motion for � gives

is ˙✓ = �2� sin ✓ sin� = i2� sin ✓ sinh�I (11)

which integrates as

✓ (⌧) = 2 arctan

⇣
e!(⌧�⌧0)

⌘
(12)

where ! = (2�/s) sinh�I . The instanton is indepen-
dent of the number of spins and only depends on the
initial and the final points. As found in [15] the instanton
contributes to the action only through the Wess-Zumino
term, as Ueff = 0 all along the trajectory. The action is
given by[15]

Sc = S0 �
isN

2

Z ⇡+i�I

0
d� cos ✓|✓=0 �

isN

2

Z 0

⇡+i�I

d� cos ✓|✓=⇡

= 0� isN⇡ +Ns�I = �isN⇡ +Ns�I (13)

The two Néel states reorganize into the symmetric and
antsymmetric linear superpositions, | +i and the | �i as
in [15]. The energy splitting is then

� = 2De�Sc
= 2D

✓
�

2K

◆Ns

cos(sN⇡) (14)

h |e��H |�i =
Z

D{✓i,�i} e�SE
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• The Feynman path integral in Minkowski 
space is not a well defined mathematical 
expression. 

• The integral is not absolutely convergent. 
• Consider the two dimensional example:

Changing variables to polar coordinates 
we have

5



• The actual definition of the path integral is 
via the Euclidean path integral, with 
imaginary time.           

6



• Then the Euclidean functional integral 
defined by:

7



• sometimes the Euclidean action is complex 
• such terms are linear in the time derivative 
• hence the i in front of the Minkowski space 

action is not cancelled, indeed:

thus the Euclidean action is in general complex 
and the functional integral is of the form:

8



• This is not an great problem to the proper 
mathematical definition of the functional 
integral. 

•However, the usual perturbative paradigm of 
quantum mechanics, to find the classical 
critical points of the action and quantize the 
small oscillations, is not straightforward. 

• Imagine that we have written the action 
strictly in terms of real fields, which is 
always possible. 

• There are, in general, no solutions to the 
equations of motion.
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• Classical solutions are the critical points of 
the action. 

• The corresponding equations of motion have 
no solution for real fields in general 

• Solutions may exist, but they are off the real 
axis in complexified field space.

10



Even number of sites
• This case admits the Néel states as 

reasonable approximations to the vacuum. 
• However, they can tunnel into each other. 
• The classical equation of motion is:

2

teraction Hamiltonian term in the 2

N degenerate sub-
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1

2
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(3)

which has a diagonal term and a term which induces tran-
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�
N
2

�
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forms the Néel states into each other, and thus at this
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obtained from Eq.(4), however we will obtain the desired
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ˆV
⌘sN�1

+ O(QV )

sN�2, Es =

�KNs2 and Q = 1� | pihp | � | �pih � p | is the
operator projecting to the complement of the degenerate
sub-space. With a bit of work, the energy splitting can be
obtained from Eq.(4), however we will obtain the desired
result via the spin coherent state path integral formalism
[12, 13, 15]. In this formalism, each spin is represented
by a unit vector, and the corresponding (Euclidean) La-
grangian is given by
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(5)

The first term is the usual Wess-Zumino [14] term which
arises from the non-orthogonality of spin coherent states
while the other two terms correspond to the anisotropy
energy and the exchange energy. Quantum amplitudes
are obtained via the path integral. Solutions of the
(Euclidean) classical equations of motion give informa-
tion about quantum tunnelling amplitudes. The classical
equation of motion for �i yields
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which corresponds to the conservation of z-component of
the total spin

P
i S

z
i , as the full Hamiltonian, Eq.(1), is

invariant under rotations about the z axis. A particular
solution of Eq.(7) is ✓2k�1 ⌘ ✓, and ✓2k = ⇡ � ✓, k =

1, 2 · · · , N . Hence the effective Lagrangian (adding an
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Leff
E = is

NX

k=1

˙�k � is cos ✓

N/2X

k=1

(

˙�2k�1 � ˙�2k)

+

NX

i=1


K + �[1 + cos(�i � �i+1)]

�
sin

2 ✓ (8)

= isN ˙

�� isN

2

˙� cos ✓ + Ueff (9)
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ansatz �i � �i+1 = (�1)

i+1� effectively reducing to a
single spin problem. The instanton that we will find must
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@⌧Ueff = 0, which then must vanish, Ueff = 0, since it
is so at ✓ = 0. This implies
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since sin ✓(⌧) 6= 0 along the whole trajectory. Thus �
is a complex constant which can be written as � = ⇡ +

i�I similar to that of two spin case [15]. The classical
equation of motion for � gives
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where ! = (2�/s) sinh�I . The instanton is indepen-
dent of the number of spins and only depends on the
initial and the final points. As found in [15] the instanton
contributes to the action only through the Wess-Zumino
term, as Ueff = 0 all along the trajectory. The action is
given by[15]
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in [15]. The energy splitting is then
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• This gives the ground state is symmetric 
superposition of the two Néel states       for 
all values except N=2(2k+1) and half odd 
integer spins, for which it is the anti-
symmetric superposition       . 

• The dependence on the coupling constant      
indicates that the result can be obtained in 
high orders in perturbation theory. 

• In the thermodynamic limit, the two Néel 
states become degenerate showing parity is 
spontaneously broken. 
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where D is a determinantal pre-factor which contains no
� dependence. The factor of �Ns signifies the order of
degenerate perturbation theory as can be easily verified
from Eq.(4). The energy splitting, Eq.(14) is the general
formula for any even spin N . For N = 2 we recover the
results obtained previously[11, 15]. The factor sN can
be even or odd, depending on the value of the spin. For
half odd integer spin, and for N = 2(2k+1) we find � is
negative which means that | �i is the ground state and
| +i is the first excited state. In all other cases, for any
value of the spin s and N = 2(2k) we find � is positive
and then | +i is the ground state, | �i is the first excited
state.

Odd spin chain, frustration and solitons- When we con-
sider a periodic chain with an odd number of sites a soli-
ton like defect arises due to the spin frustration. The fully
anti-aligned Néel like state cannot complete periodically,
as it requires an even total number of spins. Thus there
has to be at least one pair of spins that is aligned. This
can come in the form up-up or down-down while all other
pairs of neighbouring spins are in the up-down or down-
up combination. As the total z component of the spin is
conserved, these states lie in orthogonal super-selection
sectors and never transform into each other. The posi-
tion of the soliton is arbitrary thus each sector is N -fold
degenerate. In the first case the total z component of the
spin is s while in the second case it is �s. We will without
loss of generality consider the s sector. These degenerate
states are denoted by | ki, k = 1, · · · , N where

| ki =|", #, ", #, ", · · · , ", ",|{z}
k,k+1th place

, · · · , ", # i (15)

in obvious notation. These states have the same energy
Es = �KNs2 from ˆH0 and in first order degenerate per-
turbation theory Es = �KNs2 � �(N � 1)s2 + �s2 =

(�K � �)Ns2 + 2�s2 and are split from the first excited
level, which requires the introduction of a soliton anti-
soliton pair, by an energy of 4�. In each order of per-
turbation theory less than 2s, the degenerate multiplet
of states mixes with states of higher energy, but due to
invariance under translation, the corrections brought to
each state are identical and the degeneracy is not split.
However, at order 2s, the degenerate multiplet is mapped
to itself. This causes it to split in energy and the states
to reorganize into a band. Indeed, ˆV 2s contains the
term (S�

k+1S
+
k+2)

2s and (S+
k�1S

�
k )

2s. When acting on the
ket | ki flips the anti-aligned pair of spins at positions
k + 1, k + 2 and at k � 1, k respectively. It is easy to see
that flipping this pair of spins has the effect of translating
the soliton | ki !| k+2i and | ki !| k� 2i respectively.
All other terms in ˆV 2s map to states out of the degener-
ate subspace, either inserting a soliton anti-soliton pair
or changing the value of Sz to non extremal values, and
hence do not contribute to breaking the degeneracy. To
compute the splitting and the corresponding eigenstates,

we follow [11], we have to diagonalize the N ⇥N matrix
with components bµ,⌫ given by

bµ,⌫ = hµ| ˆVA2s�1|⌫i , µ, ⌫ = 1, 2, · · · , N (16)

where A2s�1
=

⇣
Q

Es�Ĥ0
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⌘2s�1

, and Q = 1�
P

| µihµ |.
The calculation of the components is straightforward,
looking at bµ,1 we find
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(17)

Applying the operators 2s times on the right hand side
we obtain

bµ,1 = C[hµ|3i+ hµ|N � 1i] (18)

where C is given by

C = ±
✓
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2

◆2s 2sY

m=1

m(2s�m+ 1)
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1
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(19)

The first product in Eqn.(19) comes from the two square
roots that accompany the action of the raising and lower-
ing operators, and the second product is a consequence of
the energy denominators. The plus or minus sign arises
because we have 2s � 1 products of negative energy de-
nominators in Eq.(17), so if s is integer, 2s�1 is odd and
we get a minus sign while for half-odd integer s, 2s � 1

is even and we get a plus sign. Similarly, one can show
that bµ,⌫ = C[hµ|⌫ + 2i + hµ|⌫ � 2i] defined periodically
of course. Thus we find that the matrix, [bµ,⌫ ], that we
must diagonalize is a circulant matrix [16]

[bµ,⌫ ] = C

0

BBBBBBBB@

0 0 1 0 · · · 1 0

0 0 0 1 · · · 0 1

1 0 0 0 1 · · · 0

... 1 0

. . . · · ·
. . .

1 · · ·
. . . · · · 0 0 0

0 1 · · · 1 · · · 0 0 0

1

CCCCCCCCA

. (20)

In this matrix each row element is moved one step to the
right, periodically, relative to the preceding row. The
eigenvalues and eigenvectors are well known. The jth

eigenvalue is given by

"j = b1,1 + b1,2!j + b1,3!
2
j + · · ·+ b1,N!N�1

j (21)

where !j = ei
2⇡j
N is the jth , N th root of unity with

corresponding eignvector | 2⇡j
N i = (1,!j ,!2

j , · · · ,!
N�1
j ),
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where D is a determinantal pre-factor which contains no
� dependence. The factor of �Ns signifies the order of
degenerate perturbation theory as can be easily verified
from Eq.(4). The energy splitting, Eq.(14) is the general
formula for any even spin N . For N = 2 we recover the
results obtained previously[11, 15]. The factor sN can
be even or odd, depending on the value of the spin. For
half odd integer spin, and for N = 2(2k+1) we find � is
negative which means that | �i is the ground state and
| +i is the first excited state. In all other cases, for any
value of the spin s and N = 2(2k) we find � is positive
and then | +i is the ground state, | �i is the first excited
state.

Odd spin chain, frustration and solitons- When we con-
sider a periodic chain with an odd number of sites a soli-
ton like defect arises due to the spin frustration. The fully
anti-aligned Néel like state cannot complete periodically,
as it requires an even total number of spins. Thus there
has to be at least one pair of spins that is aligned. This
can come in the form up-up or down-down while all other
pairs of neighbouring spins are in the up-down or down-
up combination. As the total z component of the spin is
conserved, these states lie in orthogonal super-selection
sectors and never transform into each other. The posi-
tion of the soliton is arbitrary thus each sector is N -fold
degenerate. In the first case the total z component of the
spin is s while in the second case it is �s. We will without
loss of generality consider the s sector. These degenerate
states are denoted by | ki, k = 1, · · · , N where

| ki =|", #, ", #, ", · · · , ", ",|{z}
k,k+1th place

, · · · , ", # i (15)

in obvious notation. These states have the same energy
Es = �KNs2 from ˆH0 and in first order degenerate per-
turbation theory Es = �KNs2 � �(N � 1)s2 + �s2 =

(�K � �)Ns2 + 2�s2 and are split from the first excited
level, which requires the introduction of a soliton anti-
soliton pair, by an energy of 4�. In each order of per-
turbation theory less than 2s, the degenerate multiplet
of states mixes with states of higher energy, but due to
invariance under translation, the corrections brought to
each state are identical and the degeneracy is not split.
However, at order 2s, the degenerate multiplet is mapped
to itself. This causes it to split in energy and the states
to reorganize into a band. Indeed, ˆV 2s contains the
term (S�

k+1S
+
k+2)

2s and (S+
k�1S
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k )

2s. When acting on the
ket | ki flips the anti-aligned pair of spins at positions
k + 1, k + 2 and at k � 1, k respectively. It is easy to see
that flipping this pair of spins has the effect of translating
the soliton | ki !| k+2i and | ki !| k� 2i respectively.
All other terms in ˆV 2s map to states out of the degener-
ate subspace, either inserting a soliton anti-soliton pair
or changing the value of Sz to non extremal values, and
hence do not contribute to breaking the degeneracy. To
compute the splitting and the corresponding eigenstates,

we follow [11], we have to diagonalize the N ⇥N matrix
with components bµ,⌫ given by

bµ,⌫ = hµ| ˆVA2s�1|⌫i , µ, ⌫ = 1, 2, · · · , N (16)

where A2s�1
=

⇣
Q
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, and Q = 1�
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looking at bµ,1 we find
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Applying the operators 2s times on the right hand side
we obtain

bµ,1 = C[hµ|3i+ hµ|N � 1i] (18)

where C is given by

C = ±
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The first product in Eqn.(19) comes from the two square
roots that accompany the action of the raising and lower-
ing operators, and the second product is a consequence of
the energy denominators. The plus or minus sign arises
because we have 2s � 1 products of negative energy de-
nominators in Eq.(17), so if s is integer, 2s�1 is odd and
we get a minus sign while for half-odd integer s, 2s � 1

is even and we get a plus sign. Similarly, one can show
that bµ,⌫ = C[hµ|⌫ + 2i + hµ|⌫ � 2i] defined periodically
of course. Thus we find that the matrix, [bµ,⌫ ], that we
must diagonalize is a circulant matrix [16]

[bµ,⌫ ] = C

0

BBBBBBBB@

0 0 1 0 · · · 1 0

0 0 0 1 · · · 0 1

1 0 0 0 1 · · · 0

... 1 0

. . . · · ·
. . .

1 · · ·
. . . · · · 0 0 0

0 1 · · · 1 · · · 0 0 0

1

CCCCCCCCA

. (20)

In this matrix each row element is moved one step to the
right, periodically, relative to the preceding row. The
eigenvalues and eigenvectors are well known. The jth

eigenvalue is given by

"j = b1,1 + b1,2!j + b1,3!
2
j + · · ·+ b1,N!N�1

j (21)

where !j = ei
2⇡j
N is the jth , N th root of unity with

corresponding eignvector | 2⇡j
N i = (1,!j ,!2

j , · · · ,!
N�1
j ),
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where D is a determinantal pre-factor which contains no
� dependence. The factor of �Ns signifies the order of
degenerate perturbation theory as can be easily verified
from Eq.(4). The energy splitting, Eq.(14) is the general
formula for any even spin N . For N = 2 we recover the
results obtained previously[11, 15]. The factor sN can
be even or odd, depending on the value of the spin. For
half odd integer spin, and for N = 2(2k+1) we find � is
negative which means that | �i is the ground state and
| +i is the first excited state. In all other cases, for any
value of the spin s and N = 2(2k) we find � is positive
and then | +i is the ground state, | �i is the first excited
state.

Odd spin chain, frustration and solitons- When we con-
sider a periodic chain with an odd number of sites a soli-
ton like defect arises due to the spin frustration. The fully
anti-aligned Néel like state cannot complete periodically,
as it requires an even total number of spins. Thus there
has to be at least one pair of spins that is aligned. This
can come in the form up-up or down-down while all other
pairs of neighbouring spins are in the up-down or down-
up combination. As the total z component of the spin is
conserved, these states lie in orthogonal super-selection
sectors and never transform into each other. The posi-
tion of the soliton is arbitrary thus each sector is N -fold
degenerate. In the first case the total z component of the
spin is s while in the second case it is �s. We will without
loss of generality consider the s sector. These degenerate
states are denoted by | ki, k = 1, · · · , N where

| ki =|", #, ", #, ", · · · , ", ",|{z}
k,k+1th place

, · · · , ", # i (15)

in obvious notation. These states have the same energy
Es = �KNs2 from ˆH0 and in first order degenerate per-
turbation theory Es = �KNs2 � �(N � 1)s2 + �s2 =

(�K � �)Ns2 + 2�s2 and are split from the first excited
level, which requires the introduction of a soliton anti-
soliton pair, by an energy of 4�. In each order of per-
turbation theory less than 2s, the degenerate multiplet
of states mixes with states of higher energy, but due to
invariance under translation, the corrections brought to
each state are identical and the degeneracy is not split.
However, at order 2s, the degenerate multiplet is mapped
to itself. This causes it to split in energy and the states
to reorganize into a band. Indeed, ˆV 2s contains the
term (S�

k+1S
+
k+2)

2s and (S+
k�1S

�
k )

2s. When acting on the
ket | ki flips the anti-aligned pair of spins at positions
k + 1, k + 2 and at k � 1, k respectively. It is easy to see
that flipping this pair of spins has the effect of translating
the soliton | ki !| k+2i and | ki !| k� 2i respectively.
All other terms in ˆV 2s map to states out of the degener-
ate subspace, either inserting a soliton anti-soliton pair
or changing the value of Sz to non extremal values, and
hence do not contribute to breaking the degeneracy. To
compute the splitting and the corresponding eigenstates,

we follow [11], we have to diagonalize the N ⇥N matrix
with components bµ,⌫ given by

bµ,⌫ = hµ| ˆVA2s�1|⌫i , µ, ⌫ = 1, 2, · · · , N (16)

where A2s�1
=

⇣
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, and Q = 1�
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The calculation of the components is straightforward,
looking at bµ,1 we find
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Applying the operators 2s times on the right hand side
we obtain

bµ,1 = C[hµ|3i+ hµ|N � 1i] (18)

where C is given by

C = ±
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The first product in Eqn.(19) comes from the two square
roots that accompany the action of the raising and lower-
ing operators, and the second product is a consequence of
the energy denominators. The plus or minus sign arises
because we have 2s � 1 products of negative energy de-
nominators in Eq.(17), so if s is integer, 2s�1 is odd and
we get a minus sign while for half-odd integer s, 2s � 1

is even and we get a plus sign. Similarly, one can show
that bµ,⌫ = C[hµ|⌫ + 2i + hµ|⌫ � 2i] defined periodically
of course. Thus we find that the matrix, [bµ,⌫ ], that we
must diagonalize is a circulant matrix [16]

[bµ,⌫ ] = C

0
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0 0 1 0 · · · 1 0
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In this matrix each row element is moved one step to the
right, periodically, relative to the preceding row. The
eigenvalues and eigenvectors are well known. The jth

eigenvalue is given by
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Odd number of sites
• The previous description is markedly 

different when one considers an odd number 
of sites. 

• Here the Néel state is frustrated, there is 
necessarily a defect.   

• As the position of the defect is arbitrary, the 
ground state is N fold degenerate.
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where D is a determinantal pre-factor which contains no
� dependence. The factor of �Ns signifies the order of
degenerate perturbation theory as can be easily verified
from Eq.(4). The energy splitting, Eq.(14) is the general
formula for any even spin N . For N = 2 we recover the
results obtained previously[11, 15]. The factor sN can
be even or odd, depending on the value of the spin. For
half odd integer spin, and for N = 2(2k+1) we find � is
negative which means that | �i is the ground state and
| +i is the first excited state. In all other cases, for any
value of the spin s and N = 2(2k) we find � is positive
and then | +i is the ground state, | �i is the first excited
state.

Odd spin chain, frustration and solitons- When we con-
sider a periodic chain with an odd number of sites a soli-
ton like defect arises due to the spin frustration. The fully
anti-aligned Néel like state cannot complete periodically,
as it requires an even total number of spins. Thus there
has to be at least one pair of spins that is aligned. This
can come in the form up-up or down-down while all other
pairs of neighbouring spins are in the up-down or down-
up combination. As the total z component of the spin is
conserved, these states lie in orthogonal super-selection
sectors and never transform into each other. The posi-
tion of the soliton is arbitrary thus each sector is N -fold
degenerate. In the first case the total z component of the
spin is s while in the second case it is �s. We will without
loss of generality consider the s sector. These degenerate
states are denoted by | ki, k = 1, · · · , N where

| ki =|", #, ", #, ", · · · , ", ",|{z}
k,k+1th place

, · · · , ", # i (15)

in obvious notation. These states have the same energy
Es = �KNs2 from ˆH0 and in first order degenerate per-
turbation theory Es = �KNs2 � �(N � 1)s2 + �s2 =

(�K � �)Ns2 + 2�s2 and are split from the first excited
level, which requires the introduction of a soliton anti-
soliton pair, by an energy of 4�. In each order of per-
turbation theory less than 2s, the degenerate multiplet
of states mixes with states of higher energy, but due to
invariance under translation, the corrections brought to
each state are identical and the degeneracy is not split.
However, at order 2s, the degenerate multiplet is mapped
to itself. This causes it to split in energy and the states
to reorganize into a band. Indeed, ˆV 2s contains the
term (S�
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2s. When acting on the
ket | ki flips the anti-aligned pair of spins at positions
k + 1, k + 2 and at k � 1, k respectively. It is easy to see
that flipping this pair of spins has the effect of translating
the soliton | ki !| k+2i and | ki !| k� 2i respectively.
All other terms in ˆV 2s map to states out of the degener-
ate subspace, either inserting a soliton anti-soliton pair
or changing the value of Sz to non extremal values, and
hence do not contribute to breaking the degeneracy. To
compute the splitting and the corresponding eigenstates,

we follow [11], we have to diagonalize the N ⇥N matrix
with components bµ,⌫ given by

bµ,⌫ = hµ| ˆVA2s�1|⌫i , µ, ⌫ = 1, 2, · · · , N (16)
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=
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Applying the operators 2s times on the right hand side
we obtain

bµ,1 = C[hµ|3i+ hµ|N � 1i] (18)

where C is given by
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The first product in Eqn.(19) comes from the two square
roots that accompany the action of the raising and lower-
ing operators, and the second product is a consequence of
the energy denominators. The plus or minus sign arises
because we have 2s � 1 products of negative energy de-
nominators in Eq.(17), so if s is integer, 2s�1 is odd and
we get a minus sign while for half-odd integer s, 2s � 1

is even and we get a plus sign. Similarly, one can show
that bµ,⌫ = C[hµ|⌫ + 2i + hµ|⌫ � 2i] defined periodically
of course. Thus we find that the matrix, [bµ,⌫ ], that we
must diagonalize is a circulant matrix [16]

[bµ,⌫ ] = C

0

BBBBBBBB@

0 0 1 0 · · · 1 0

0 0 0 1 · · · 0 1

1 0 0 0 1 · · · 0

... 1 0

. . . · · ·
. . .

1 · · ·
. . . · · · 0 0 0

0 1 · · · 1 · · · 0 0 0

1

CCCCCCCCA

. (20)

In this matrix each row element is moved one step to the
right, periodically, relative to the preceding row. The
eigenvalues and eigenvectors are well known. The jth

eigenvalue is given by

"j = b1,1 + b1,2!j + b1,3!
2
j + · · ·+ b1,N!N�1

j (21)

where !j = ei
2⇡j
N is the jth , N th root of unity with

corresponding eignvector | 2⇡j
N i = (1,!j ,!2

j , · · · ,!
N�1
j ),

3

where D is a determinantal pre-factor which contains no
� dependence. The factor of �Ns signifies the order of
degenerate perturbation theory as can be easily verified
from Eq.(4). The energy splitting, Eq.(14) is the general
formula for any even spin N . For N = 2 we recover the
results obtained previously[11, 15]. The factor sN can
be even or odd, depending on the value of the spin. For
half odd integer spin, and for N = 2(2k+1) we find � is
negative which means that | �i is the ground state and
| +i is the first excited state. In all other cases, for any
value of the spin s and N = 2(2k) we find � is positive
and then | +i is the ground state, | �i is the first excited
state.

Odd spin chain, frustration and solitons- When we con-
sider a periodic chain with an odd number of sites a soli-
ton like defect arises due to the spin frustration. The fully
anti-aligned Néel like state cannot complete periodically,
as it requires an even total number of spins. Thus there
has to be at least one pair of spins that is aligned. This
can come in the form up-up or down-down while all other
pairs of neighbouring spins are in the up-down or down-
up combination. As the total z component of the spin is
conserved, these states lie in orthogonal super-selection
sectors and never transform into each other. The posi-
tion of the soliton is arbitrary thus each sector is N -fold
degenerate. In the first case the total z component of the
spin is s while in the second case it is �s. We will without
loss of generality consider the s sector. These degenerate
states are denoted by | ki, k = 1, · · · , N where

| ki =|", #, ", #, ", · · · , ", ",|{z}
k,k+1th place

, · · · , ", # i (15)

in obvious notation. These states have the same energy
Es = �KNs2 from ˆH0 and in first order degenerate per-
turbation theory Es = �KNs2 � �(N � 1)s2 + �s2 =

(�K � �)Ns2 + 2�s2 and are split from the first excited
level, which requires the introduction of a soliton anti-
soliton pair, by an energy of 4�. In each order of per-
turbation theory less than 2s, the degenerate multiplet
of states mixes with states of higher energy, but due to
invariance under translation, the corrections brought to
each state are identical and the degeneracy is not split.
However, at order 2s, the degenerate multiplet is mapped
to itself. This causes it to split in energy and the states
to reorganize into a band. Indeed, ˆV 2s contains the
term (S�

k+1S
+
k+2)

2s and (S+
k�1S

�
k )

2s. When acting on the
ket | ki flips the anti-aligned pair of spins at positions
k + 1, k + 2 and at k � 1, k respectively. It is easy to see
that flipping this pair of spins has the effect of translating
the soliton | ki !| k+2i and | ki !| k� 2i respectively.
All other terms in ˆV 2s map to states out of the degener-
ate subspace, either inserting a soliton anti-soliton pair
or changing the value of Sz to non extremal values, and
hence do not contribute to breaking the degeneracy. To
compute the splitting and the corresponding eigenstates,

we follow [11], we have to diagonalize the N ⇥N matrix
with components bµ,⌫ given by

bµ,⌫ = hµ| ˆVA2s�1|⌫i , µ, ⌫ = 1, 2, · · · , N (16)

where A2s�1
=
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, and Q = 1�
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The calculation of the components is straightforward,
looking at bµ,1 we find
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Applying the operators 2s times on the right hand side
we obtain

bµ,1 = C[hµ|3i+ hµ|N � 1i] (18)

where C is given by
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The first product in Eqn.(19) comes from the two square
roots that accompany the action of the raising and lower-
ing operators, and the second product is a consequence of
the energy denominators. The plus or minus sign arises
because we have 2s � 1 products of negative energy de-
nominators in Eq.(17), so if s is integer, 2s�1 is odd and
we get a minus sign while for half-odd integer s, 2s � 1

is even and we get a plus sign. Similarly, one can show
that bµ,⌫ = C[hµ|⌫ + 2i + hµ|⌫ � 2i] defined periodically
of course. Thus we find that the matrix, [bµ,⌫ ], that we
must diagonalize is a circulant matrix [16]

[bµ,⌫ ] = C

0

BBBBBBBB@

0 0 1 0 · · · 1 0

0 0 0 1 · · · 0 1

1 0 0 0 1 · · · 0

... 1 0
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. . . · · · 0 0 0
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In this matrix each row element is moved one step to the
right, periodically, relative to the preceding row. The
eigenvalues and eigenvectors are well known. The jth

eigenvalue is given by

"j = b1,1 + b1,2!j + b1,3!
2
j + · · ·+ b1,N!N�1

j (21)

where !j = ei
2⇡j
N is the jth , N th root of unity with

corresponding eignvector | 2⇡j
N i = (1,!j ,!2

j , · · · ,!
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j ),
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where D is a determinantal pre-factor which contains no
� dependence. The factor of �Ns signifies the order of
degenerate perturbation theory as can be easily verified
from Eq.(4). The energy splitting, Eq.(14) is the general
formula for any even spin N . For N = 2 we recover the
results obtained previously[11, 15]. The factor sN can
be even or odd, depending on the value of the spin. For
half odd integer spin, and for N = 2(2k+1) we find � is
negative which means that | �i is the ground state and
| +i is the first excited state. In all other cases, for any
value of the spin s and N = 2(2k) we find � is positive
and then | +i is the ground state, | �i is the first excited
state.

Odd spin chain, frustration and solitons- When we con-
sider a periodic chain with an odd number of sites a soli-
ton like defect arises due to the spin frustration. The fully
anti-aligned Néel like state cannot complete periodically,
as it requires an even total number of spins. Thus there
has to be at least one pair of spins that is aligned. This
can come in the form up-up or down-down while all other
pairs of neighbouring spins are in the up-down or down-
up combination. As the total z component of the spin is
conserved, these states lie in orthogonal super-selection
sectors and never transform into each other. The posi-
tion of the soliton is arbitrary thus each sector is N -fold
degenerate. In the first case the total z component of the
spin is s while in the second case it is �s. We will without
loss of generality consider the s sector. These degenerate
states are denoted by | ki, k = 1, · · · , N where

| ki =|", #, ", #, ", · · · , ", ",|{z}
k,k+1th place

, · · · , ", # i (15)

in obvious notation. These states have the same energy
Es = �KNs2 from ˆH0 and in first order degenerate per-
turbation theory Es = �KNs2 � �(N � 1)s2 + �s2 =

(�K � �)Ns2 + 2�s2 and are split from the first excited
level, which requires the introduction of a soliton anti-
soliton pair, by an energy of 4�. In each order of per-
turbation theory less than 2s, the degenerate multiplet
of states mixes with states of higher energy, but due to
invariance under translation, the corrections brought to
each state are identical and the degeneracy is not split.
However, at order 2s, the degenerate multiplet is mapped
to itself. This causes it to split in energy and the states
to reorganize into a band. Indeed, ˆV 2s contains the
term (S�
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+
k+2)

2s and (S+
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2s. When acting on the
ket | ki flips the anti-aligned pair of spins at positions
k + 1, k + 2 and at k � 1, k respectively. It is easy to see
that flipping this pair of spins has the effect of translating
the soliton | ki !| k+2i and | ki !| k� 2i respectively.
All other terms in ˆV 2s map to states out of the degener-
ate subspace, either inserting a soliton anti-soliton pair
or changing the value of Sz to non extremal values, and
hence do not contribute to breaking the degeneracy. To
compute the splitting and the corresponding eigenstates,

we follow [11], we have to diagonalize the N ⇥N matrix
with components bµ,⌫ given by

bµ,⌫ = hµ| ˆVA2s�1|⌫i , µ, ⌫ = 1, 2, · · · , N (16)

where A2s�1
=
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Applying the operators 2s times on the right hand side
we obtain

bµ,1 = C[hµ|3i+ hµ|N � 1i] (18)

where C is given by
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The first product in Eqn.(19) comes from the two square
roots that accompany the action of the raising and lower-
ing operators, and the second product is a consequence of
the energy denominators. The plus or minus sign arises
because we have 2s � 1 products of negative energy de-
nominators in Eq.(17), so if s is integer, 2s�1 is odd and
we get a minus sign while for half-odd integer s, 2s � 1

is even and we get a plus sign. Similarly, one can show
that bµ,⌫ = C[hµ|⌫ + 2i + hµ|⌫ � 2i] defined periodically
of course. Thus we find that the matrix, [bµ,⌫ ], that we
must diagonalize is a circulant matrix [16]

[bµ,⌫ ] = C

0
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0 0 1 0 · · · 1 0

0 0 0 1 · · · 0 1
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In this matrix each row element is moved one step to the
right, periodically, relative to the preceding row. The
eigenvalues and eigenvectors are well known. The jth

eigenvalue is given by

"j = b1,1 + b1,2!j + b1,3!
2
j + · · ·+ b1,N!N�1

j (21)

where !j = ei
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N is the jth , N th root of unity with

corresponding eignvector | 2⇡j
N i = (1,!j ,!2
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where D is a determinantal pre-factor which contains no
� dependence. The factor of �Ns signifies the order of
degenerate perturbation theory as can be easily verified
from Eq.(4). The energy splitting, Eq.(14) is the general
formula for any even spin N . For N = 2 we recover the
results obtained previously[11, 15]. The factor sN can
be even or odd, depending on the value of the spin. For
half odd integer spin, and for N = 2(2k+1) we find � is
negative which means that | �i is the ground state and
| +i is the first excited state. In all other cases, for any
value of the spin s and N = 2(2k) we find � is positive
and then | +i is the ground state, | �i is the first excited
state.

Odd spin chain, frustration and solitons- When we con-
sider a periodic chain with an odd number of sites a soli-
ton like defect arises due to the spin frustration. The fully
anti-aligned Néel like state cannot complete periodically,
as it requires an even total number of spins. Thus there
has to be at least one pair of spins that is aligned. This
can come in the form up-up or down-down while all other
pairs of neighbouring spins are in the up-down or down-
up combination. As the total z component of the spin is
conserved, these states lie in orthogonal super-selection
sectors and never transform into each other. The posi-
tion of the soliton is arbitrary thus each sector is N -fold
degenerate. In the first case the total z component of the
spin is s while in the second case it is �s. We will without
loss of generality consider the s sector. These degenerate
states are denoted by | ki, k = 1, · · · , N where

| ki =|", #, ", #, ", · · · , ", ",|{z}
k,k+1th place

, · · · , ", # i (15)

in obvious notation. These states have the same energy
Es = �KNs2 from ˆH0 and in first order degenerate per-
turbation theory Es = �KNs2 � �(N � 1)s2 + �s2 =

(�K � �)Ns2 + 2�s2 and are split from the first excited
level, which requires the introduction of a soliton anti-
soliton pair, by an energy of 4�. In each order of per-
turbation theory less than 2s, the degenerate multiplet
of states mixes with states of higher energy, but due to
invariance under translation, the corrections brought to
each state are identical and the degeneracy is not split.
However, at order 2s, the degenerate multiplet is mapped
to itself. This causes it to split in energy and the states
to reorganize into a band. Indeed, ˆV 2s contains the
term (S�

k+1S
+
k+2)

2s and (S+
k�1S
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k )

2s. When acting on the
ket | ki flips the anti-aligned pair of spins at positions
k + 1, k + 2 and at k � 1, k respectively. It is easy to see
that flipping this pair of spins has the effect of translating
the soliton | ki !| k+2i and | ki !| k� 2i respectively.
All other terms in ˆV 2s map to states out of the degener-
ate subspace, either inserting a soliton anti-soliton pair
or changing the value of Sz to non extremal values, and
hence do not contribute to breaking the degeneracy. To
compute the splitting and the corresponding eigenstates,

we follow [11], we have to diagonalize the N ⇥N matrix
with components bµ,⌫ given by

bµ,⌫ = hµ| ˆVA2s�1|⌫i , µ, ⌫ = 1, 2, · · · , N (16)

where A2s�1
=
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Applying the operators 2s times on the right hand side
we obtain

bµ,1 = C[hµ|3i+ hµ|N � 1i] (18)

where C is given by
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The first product in Eqn.(19) comes from the two square
roots that accompany the action of the raising and lower-
ing operators, and the second product is a consequence of
the energy denominators. The plus or minus sign arises
because we have 2s � 1 products of negative energy de-
nominators in Eq.(17), so if s is integer, 2s�1 is odd and
we get a minus sign while for half-odd integer s, 2s � 1

is even and we get a plus sign. Similarly, one can show
that bµ,⌫ = C[hµ|⌫ + 2i + hµ|⌫ � 2i] defined periodically
of course. Thus we find that the matrix, [bµ,⌫ ], that we
must diagonalize is a circulant matrix [16]

[bµ,⌫ ] = C
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0 0 1 0 · · · 1 0
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In this matrix each row element is moved one step to the
right, periodically, relative to the preceding row. The
eigenvalues and eigenvectors are well known. The jth

eigenvalue is given by

"j = b1,1 + b1,2!j + b1,3!
2
j + · · ·+ b1,N!N�1

j (21)
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where D is a determinantal pre-factor which contains no
� dependence. The factor of �Ns signifies the order of
degenerate perturbation theory as can be easily verified
from Eq.(4). The energy splitting, Eq.(14) is the general
formula for any even spin N . For N = 2 we recover the
results obtained previously[11, 15]. The factor sN can
be even or odd, depending on the value of the spin. For
half odd integer spin, and for N = 2(2k+1) we find � is
negative which means that | �i is the ground state and
| +i is the first excited state. In all other cases, for any
value of the spin s and N = 2(2k) we find � is positive
and then | +i is the ground state, | �i is the first excited
state.

Odd spin chain, frustration and solitons- When we con-
sider a periodic chain with an odd number of sites a soli-
ton like defect arises due to the spin frustration. The fully
anti-aligned Néel like state cannot complete periodically,
as it requires an even total number of spins. Thus there
has to be at least one pair of spins that is aligned. This
can come in the form up-up or down-down while all other
pairs of neighbouring spins are in the up-down or down-
up combination. As the total z component of the spin is
conserved, these states lie in orthogonal super-selection
sectors and never transform into each other. The posi-
tion of the soliton is arbitrary thus each sector is N -fold
degenerate. In the first case the total z component of the
spin is s while in the second case it is �s. We will without
loss of generality consider the s sector. These degenerate
states are denoted by | ki, k = 1, · · · , N where

| ki =|", #, ", #, ", · · · , ", ",|{z}
k,k+1th place

, · · · , ", # i (15)

in obvious notation. These states have the same energy
Es = �KNs2 from ˆH0 and in first order degenerate per-
turbation theory Es = �KNs2 � �(N � 1)s2 + �s2 =

(�K � �)Ns2 + 2�s2 and are split from the first excited
level, which requires the introduction of a soliton anti-
soliton pair, by an energy of 4�. In each order of per-
turbation theory less than 2s, the degenerate multiplet
of states mixes with states of higher energy, but due to
invariance under translation, the corrections brought to
each state are identical and the degeneracy is not split.
However, at order 2s, the degenerate multiplet is mapped
to itself. This causes it to split in energy and the states
to reorganize into a band. Indeed, ˆV 2s contains the
term (S�
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2s. When acting on the
ket | ki flips the anti-aligned pair of spins at positions
k + 1, k + 2 and at k � 1, k respectively. It is easy to see
that flipping this pair of spins has the effect of translating
the soliton | ki !| k+2i and | ki !| k� 2i respectively.
All other terms in ˆV 2s map to states out of the degener-
ate subspace, either inserting a soliton anti-soliton pair
or changing the value of Sz to non extremal values, and
hence do not contribute to breaking the degeneracy. To
compute the splitting and the corresponding eigenstates,

we follow [11], we have to diagonalize the N ⇥N matrix
with components bµ,⌫ given by

bµ,⌫ = hµ| ˆVA2s�1|⌫i , µ, ⌫ = 1, 2, · · · , N (16)

where A2s�1
=
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Applying the operators 2s times on the right hand side
we obtain

bµ,1 = C[hµ|3i+ hµ|N � 1i] (18)

where C is given by
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The first product in Eqn.(19) comes from the two square
roots that accompany the action of the raising and lower-
ing operators, and the second product is a consequence of
the energy denominators. The plus or minus sign arises
because we have 2s � 1 products of negative energy de-
nominators in Eq.(17), so if s is integer, 2s�1 is odd and
we get a minus sign while for half-odd integer s, 2s � 1

is even and we get a plus sign. Similarly, one can show
that bµ,⌫ = C[hµ|⌫ + 2i + hµ|⌫ � 2i] defined periodically
of course. Thus we find that the matrix, [bµ,⌫ ], that we
must diagonalize is a circulant matrix [16]

[bµ,⌫ ] = C
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0 0 1 0 · · · 1 0
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. (20)

In this matrix each row element is moved one step to the
right, periodically, relative to the preceding row. The
eigenvalues and eigenvectors are well known. The jth

eigenvalue is given by

"j = b1,1 + b1,2!j + b1,3!
2
j + · · ·+ b1,N!N�1

j (21)

where !j = ei
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N is the jth , N th root of unity with
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where D is a determinantal pre-factor which contains no
� dependence. The factor of �Ns signifies the order of
degenerate perturbation theory as can be easily verified
from Eq.(4). The energy splitting, Eq.(14) is the general
formula for any even spin N . For N = 2 we recover the
results obtained previously[11, 15]. The factor sN can
be even or odd, depending on the value of the spin. For
half odd integer spin, and for N = 2(2k+1) we find � is
negative which means that | �i is the ground state and
| +i is the first excited state. In all other cases, for any
value of the spin s and N = 2(2k) we find � is positive
and then | +i is the ground state, | �i is the first excited
state.

Odd spin chain, frustration and solitons- When we con-
sider a periodic chain with an odd number of sites a soli-
ton like defect arises due to the spin frustration. The fully
anti-aligned Néel like state cannot complete periodically,
as it requires an even total number of spins. Thus there
has to be at least one pair of spins that is aligned. This
can come in the form up-up or down-down while all other
pairs of neighbouring spins are in the up-down or down-
up combination. As the total z component of the spin is
conserved, these states lie in orthogonal super-selection
sectors and never transform into each other. The posi-
tion of the soliton is arbitrary thus each sector is N -fold
degenerate. In the first case the total z component of the
spin is s while in the second case it is �s. We will without
loss of generality consider the s sector. These degenerate
states are denoted by | ki, k = 1, · · · , N where

| ki =|", #, ", #, ", · · · , ", ",|{z}
k,k+1th place

, · · · , ", # i (15)

in obvious notation. These states have the same energy
Es = �KNs2 from ˆH0 and in first order degenerate per-
turbation theory Es = �KNs2 � �(N � 1)s2 + �s2 =

(�K � �)Ns2 + 2�s2 and are split from the first excited
level, which requires the introduction of a soliton anti-
soliton pair, by an energy of 4�. In each order of per-
turbation theory less than 2s, the degenerate multiplet
of states mixes with states of higher energy, but due to
invariance under translation, the corrections brought to
each state are identical and the degeneracy is not split.
However, at order 2s, the degenerate multiplet is mapped
to itself. This causes it to split in energy and the states
to reorganize into a band. Indeed, ˆV 2s contains the
term (S�
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+
k+2)

2s and (S+
k�1S

�
k )

2s. When acting on the
ket | ki flips the anti-aligned pair of spins at positions
k + 1, k + 2 and at k � 1, k respectively. It is easy to see
that flipping this pair of spins has the effect of translating
the soliton | ki !| k+2i and | ki !| k� 2i respectively.
All other terms in ˆV 2s map to states out of the degener-
ate subspace, either inserting a soliton anti-soliton pair
or changing the value of Sz to non extremal values, and
hence do not contribute to breaking the degeneracy. To
compute the splitting and the corresponding eigenstates,

we follow [11], we have to diagonalize the N ⇥N matrix
with components bµ,⌫ given by

bµ,⌫ = hµ| ˆVA2s�1|⌫i , µ, ⌫ = 1, 2, · · · , N (16)
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Applying the operators 2s times on the right hand side
we obtain

bµ,1 = C[hµ|3i+ hµ|N � 1i] (18)
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The first product in Eqn.(19) comes from the two square
roots that accompany the action of the raising and lower-
ing operators, and the second product is a consequence of
the energy denominators. The plus or minus sign arises
because we have 2s � 1 products of negative energy de-
nominators in Eq.(17), so if s is integer, 2s�1 is odd and
we get a minus sign while for half-odd integer s, 2s � 1

is even and we get a plus sign. Similarly, one can show
that bµ,⌫ = C[hµ|⌫ + 2i + hµ|⌫ � 2i] defined periodically
of course. Thus we find that the matrix, [bµ,⌫ ], that we
must diagonalize is a circulant matrix [16]

[bµ,⌫ ] = C
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In this matrix each row element is moved one step to the
right, periodically, relative to the preceding row. The
eigenvalues and eigenvectors are well known. The jth

eigenvalue is given by

"j = b1,1 + b1,2!j + b1,3!
2
j + · · ·+ b1,N!N�1

j (21)

where !j = ei
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N is the jth , N th root of unity with

corresponding eignvector | 2⇡j
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where D is a determinantal pre-factor which contains no
� dependence. The factor of �Ns signifies the order of
degenerate perturbation theory as can be easily verified
from Eq.(4). The energy splitting, Eq.(14) is the general
formula for any even spin N . For N = 2 we recover the
results obtained previously[11, 15]. The factor sN can
be even or odd, depending on the value of the spin. For
half odd integer spin, and for N = 2(2k+1) we find � is
negative which means that | �i is the ground state and
| +i is the first excited state. In all other cases, for any
value of the spin s and N = 2(2k) we find � is positive
and then | +i is the ground state, | �i is the first excited
state.

Odd spin chain, frustration and solitons- When we con-
sider a periodic chain with an odd number of sites a soli-
ton like defect arises due to the spin frustration. The fully
anti-aligned Néel like state cannot complete periodically,
as it requires an even total number of spins. Thus there
has to be at least one pair of spins that is aligned. This
can come in the form up-up or down-down while all other
pairs of neighbouring spins are in the up-down or down-
up combination. As the total z component of the spin is
conserved, these states lie in orthogonal super-selection
sectors and never transform into each other. The posi-
tion of the soliton is arbitrary thus each sector is N -fold
degenerate. In the first case the total z component of the
spin is s while in the second case it is �s. We will without
loss of generality consider the s sector. These degenerate
states are denoted by | ki, k = 1, · · · , N where
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Es = �KNs2 from ˆH0 and in first order degenerate per-
turbation theory Es = �KNs2 � �(N � 1)s2 + �s2 =

(�K � �)Ns2 + 2�s2 and are split from the first excited
level, which requires the introduction of a soliton anti-
soliton pair, by an energy of 4�. In each order of per-
turbation theory less than 2s, the degenerate multiplet
of states mixes with states of higher energy, but due to
invariance under translation, the corrections brought to
each state are identical and the degeneracy is not split.
However, at order 2s, the degenerate multiplet is mapped
to itself. This causes it to split in energy and the states
to reorganize into a band. Indeed, ˆV 2s contains the
term (S�
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2s. When acting on the
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that flipping this pair of spins has the effect of translating
the soliton | ki !| k+2i and | ki !| k� 2i respectively.
All other terms in ˆV 2s map to states out of the degener-
ate subspace, either inserting a soliton anti-soliton pair
or changing the value of Sz to non extremal values, and
hence do not contribute to breaking the degeneracy. To
compute the splitting and the corresponding eigenstates,

we follow [11], we have to diagonalize the N ⇥N matrix
with components bµ,⌫ given by
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we obtain
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The first product in Eqn.(19) comes from the two square
roots that accompany the action of the raising and lower-
ing operators, and the second product is a consequence of
the energy denominators. The plus or minus sign arises
because we have 2s � 1 products of negative energy de-
nominators in Eq.(17), so if s is integer, 2s�1 is odd and
we get a minus sign while for half-odd integer s, 2s � 1

is even and we get a plus sign. Similarly, one can show
that bµ,⌫ = C[hµ|⌫ + 2i + hµ|⌫ � 2i] defined periodically
of course. Thus we find that the matrix, [bµ,⌫ ], that we
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In this matrix each row element is moved one step to the
right, periodically, relative to the preceding row. The
eigenvalues and eigenvectors are well known. The jth
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where D is a determinantal pre-factor which contains no
� dependence. The factor of �Ns signifies the order of
degenerate perturbation theory as can be easily verified
from Eq.(4). The energy splitting, Eq.(14) is the general
formula for any even spin N . For N = 2 we recover the
results obtained previously[11, 15]. The factor sN can
be even or odd, depending on the value of the spin. For
half odd integer spin, and for N = 2(2k+1) we find � is
negative which means that | �i is the ground state and
| +i is the first excited state. In all other cases, for any
value of the spin s and N = 2(2k) we find � is positive
and then | +i is the ground state, | �i is the first excited
state.

Odd spin chain, frustration and solitons- When we con-
sider a periodic chain with an odd number of sites a soli-
ton like defect arises due to the spin frustration. The fully
anti-aligned Néel like state cannot complete periodically,
as it requires an even total number of spins. Thus there
has to be at least one pair of spins that is aligned. This
can come in the form up-up or down-down while all other
pairs of neighbouring spins are in the up-down or down-
up combination. As the total z component of the spin is
conserved, these states lie in orthogonal super-selection
sectors and never transform into each other. The posi-
tion of the soliton is arbitrary thus each sector is N -fold
degenerate. In the first case the total z component of the
spin is s while in the second case it is �s. We will without
loss of generality consider the s sector. These degenerate
states are denoted by | ki, k = 1, · · · , N where

| ki =|", #, ", #, ", · · · , ", ",|{z}
k,k+1th place

, · · · , ", # i (15)

in obvious notation. These states have the same energy
Es = �KNs2 from ˆH0 and in first order degenerate per-
turbation theory Es = �KNs2 � �(N � 1)s2 + �s2 =

(�K � �)Ns2 + 2�s2 and are split from the first excited
level, which requires the introduction of a soliton anti-
soliton pair, by an energy of 4�. In each order of per-
turbation theory less than 2s, the degenerate multiplet
of states mixes with states of higher energy, but due to
invariance under translation, the corrections brought to
each state are identical and the degeneracy is not split.
However, at order 2s, the degenerate multiplet is mapped
to itself. This causes it to split in energy and the states
to reorganize into a band. Indeed, ˆV 2s contains the
term (S�
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+
k+2)

2s and (S+
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2s. When acting on the
ket | ki flips the anti-aligned pair of spins at positions
k + 1, k + 2 and at k � 1, k respectively. It is easy to see
that flipping this pair of spins has the effect of translating
the soliton | ki !| k+2i and | ki !| k� 2i respectively.
All other terms in ˆV 2s map to states out of the degener-
ate subspace, either inserting a soliton anti-soliton pair
or changing the value of Sz to non extremal values, and
hence do not contribute to breaking the degeneracy. To
compute the splitting and the corresponding eigenstates,

we follow [11], we have to diagonalize the N ⇥N matrix
with components bµ,⌫ given by

bµ,⌫ = hµ| ˆVA2s�1|⌫i , µ, ⌫ = 1, 2, · · · , N (16)
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Applying the operators 2s times on the right hand side
we obtain

bµ,1 = C[hµ|3i+ hµ|N � 1i] (18)
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The first product in Eqn.(19) comes from the two square
roots that accompany the action of the raising and lower-
ing operators, and the second product is a consequence of
the energy denominators. The plus or minus sign arises
because we have 2s � 1 products of negative energy de-
nominators in Eq.(17), so if s is integer, 2s�1 is odd and
we get a minus sign while for half-odd integer s, 2s � 1

is even and we get a plus sign. Similarly, one can show
that bµ,⌫ = C[hµ|⌫ + 2i + hµ|⌫ � 2i] defined periodically
of course. Thus we find that the matrix, [bµ,⌫ ], that we
must diagonalize is a circulant matrix [16]
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In this matrix each row element is moved one step to the
right, periodically, relative to the preceding row. The
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where D is a determinantal pre-factor which contains no
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degenerate perturbation theory as can be easily verified
from Eq.(4). The energy splitting, Eq.(14) is the general
formula for any even spin N . For N = 2 we recover the
results obtained previously[11, 15]. The factor sN can
be even or odd, depending on the value of the spin. For
half odd integer spin, and for N = 2(2k+1) we find � is
negative which means that | �i is the ground state and
| +i is the first excited state. In all other cases, for any
value of the spin s and N = 2(2k) we find � is positive
and then | +i is the ground state, | �i is the first excited
state.

Odd spin chain, frustration and solitons- When we con-
sider a periodic chain with an odd number of sites a soli-
ton like defect arises due to the spin frustration. The fully
anti-aligned Néel like state cannot complete periodically,
as it requires an even total number of spins. Thus there
has to be at least one pair of spins that is aligned. This
can come in the form up-up or down-down while all other
pairs of neighbouring spins are in the up-down or down-
up combination. As the total z component of the spin is
conserved, these states lie in orthogonal super-selection
sectors and never transform into each other. The posi-
tion of the soliton is arbitrary thus each sector is N -fold
degenerate. In the first case the total z component of the
spin is s while in the second case it is �s. We will without
loss of generality consider the s sector. These degenerate
states are denoted by | ki, k = 1, · · · , N where

| ki =|", #, ", #, ", · · · , ", ",|{z}
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in obvious notation. These states have the same energy
Es = �KNs2 from ˆH0 and in first order degenerate per-
turbation theory Es = �KNs2 � �(N � 1)s2 + �s2 =

(�K � �)Ns2 + 2�s2 and are split from the first excited
level, which requires the introduction of a soliton anti-
soliton pair, by an energy of 4�. In each order of per-
turbation theory less than 2s, the degenerate multiplet
of states mixes with states of higher energy, but due to
invariance under translation, the corrections brought to
each state are identical and the degeneracy is not split.
However, at order 2s, the degenerate multiplet is mapped
to itself. This causes it to split in energy and the states
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All other terms in ˆV 2s map to states out of the degener-
ate subspace, either inserting a soliton anti-soliton pair
or changing the value of Sz to non extremal values, and
hence do not contribute to breaking the degeneracy. To
compute the splitting and the corresponding eigenstates,
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ing operators, and the second product is a consequence of
the energy denominators. The plus or minus sign arises
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nominators in Eq.(17), so if s is integer, 2s�1 is odd and
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is even and we get a plus sign. Similarly, one can show
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where D is a determinantal pre-factor which contains no
� dependence. The factor of �Ns signifies the order of
degenerate perturbation theory as can be easily verified
from Eq.(4). The energy splitting, Eq.(14) is the general
formula for any even spin N . For N = 2 we recover the
results obtained previously[11, 15]. The factor sN can
be even or odd, depending on the value of the spin. For
half odd integer spin, and for N = 2(2k+1) we find � is
negative which means that | �i is the ground state and
| +i is the first excited state. In all other cases, for any
value of the spin s and N = 2(2k) we find � is positive
and then | +i is the ground state, | �i is the first excited
state.

Odd spin chain, frustration and solitons- When we con-
sider a periodic chain with an odd number of sites a soli-
ton like defect arises due to the spin frustration. The fully
anti-aligned Néel like state cannot complete periodically,
as it requires an even total number of spins. Thus there
has to be at least one pair of spins that is aligned. This
can come in the form up-up or down-down while all other
pairs of neighbouring spins are in the up-down or down-
up combination. As the total z component of the spin is
conserved, these states lie in orthogonal super-selection
sectors and never transform into each other. The posi-
tion of the soliton is arbitrary thus each sector is N -fold
degenerate. In the first case the total z component of the
spin is s while in the second case it is �s. We will without
loss of generality consider the s sector. These degenerate
states are denoted by | ki, k = 1, · · · , N where

| ki =|", #, ", #, ", · · · , ", ",|{z}
k,k+1th place
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in obvious notation. These states have the same energy
Es = �KNs2 from ˆH0 and in first order degenerate per-
turbation theory Es = �KNs2 � �(N � 1)s2 + �s2 =

(�K � �)Ns2 + 2�s2 and are split from the first excited
level, which requires the introduction of a soliton anti-
soliton pair, by an energy of 4�. In each order of per-
turbation theory less than 2s, the degenerate multiplet
of states mixes with states of higher energy, but due to
invariance under translation, the corrections brought to
each state are identical and the degeneracy is not split.
However, at order 2s, the degenerate multiplet is mapped
to itself. This causes it to split in energy and the states
to reorganize into a band. Indeed, ˆV 2s contains the
term (S�

k+1S
+
k+2)

2s and (S+
k�1S

�
k )

2s. When acting on the
ket | ki flips the anti-aligned pair of spins at positions
k + 1, k + 2 and at k � 1, k respectively. It is easy to see
that flipping this pair of spins has the effect of translating
the soliton | ki !| k+2i and | ki !| k� 2i respectively.
All other terms in ˆV 2s map to states out of the degener-
ate subspace, either inserting a soliton anti-soliton pair
or changing the value of Sz to non extremal values, and
hence do not contribute to breaking the degeneracy. To
compute the splitting and the corresponding eigenstates,

we follow [11], we have to diagonalize the N ⇥N matrix
with components bµ,⌫ given by

bµ,⌫ = hµ| ˆVA2s�1|⌫i , µ, ⌫ = 1, 2, · · · , N (16)

where A2s�1
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Applying the operators 2s times on the right hand side
we obtain

bµ,1 = C[hµ|3i+ hµ|N � 1i] (18)

where C is given by
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The first product in Eqn.(19) comes from the two square
roots that accompany the action of the raising and lower-
ing operators, and the second product is a consequence of
the energy denominators. The plus or minus sign arises
because we have 2s � 1 products of negative energy de-
nominators in Eq.(17), so if s is integer, 2s�1 is odd and
we get a minus sign while for half-odd integer s, 2s � 1

is even and we get a plus sign. Similarly, one can show
that bµ,⌫ = C[hµ|⌫ + 2i + hµ|⌫ � 2i] defined periodically
of course. Thus we find that the matrix, [bµ,⌫ ], that we
must diagonalize is a circulant matrix [16]
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In this matrix each row element is moved one step to the
right, periodically, relative to the preceding row. The
eigenvalues and eigenvectors are well known. The jth

eigenvalue is given by

"j = b1,1 + b1,2!j + b1,3!
2
j + · · ·+ b1,N!N�1

j (21)

where !j = ei
2⇡j
N is the jth , N th root of unity with

corresponding eignvector | 2⇡j
N i = (1,!j ,!2

j , · · · ,!
N�1
j ),
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where D is a determinantal pre-factor which contains no
� dependence. The factor of �Ns signifies the order of
degenerate perturbation theory as can be easily verified
from Eq.(4). The energy splitting, Eq.(14) is the general
formula for any even spin N . For N = 2 we recover the
results obtained previously[11, 15]. The factor sN can
be even or odd, depending on the value of the spin. For
half odd integer spin, and for N = 2(2k+1) we find � is
negative which means that | �i is the ground state and
| +i is the first excited state. In all other cases, for any
value of the spin s and N = 2(2k) we find � is positive
and then | +i is the ground state, | �i is the first excited
state.

Odd spin chain, frustration and solitons- When we con-
sider a periodic chain with an odd number of sites a soli-
ton like defect arises due to the spin frustration. The fully
anti-aligned Néel like state cannot complete periodically,
as it requires an even total number of spins. Thus there
has to be at least one pair of spins that is aligned. This
can come in the form up-up or down-down while all other
pairs of neighbouring spins are in the up-down or down-
up combination. As the total z component of the spin is
conserved, these states lie in orthogonal super-selection
sectors and never transform into each other. The posi-
tion of the soliton is arbitrary thus each sector is N -fold
degenerate. In the first case the total z component of the
spin is s while in the second case it is �s. We will without
loss of generality consider the s sector. These degenerate
states are denoted by | ki, k = 1, · · · , N where

| ki =|", #, ", #, ", · · · , ", ",|{z}
k,k+1th place

, · · · , ", # i (15)

in obvious notation. These states have the same energy
Es = �KNs2 from ˆH0 and in first order degenerate per-
turbation theory Es = �KNs2 � �(N � 1)s2 + �s2 =

(�K � �)Ns2 + 2�s2 and are split from the first excited
level, which requires the introduction of a soliton anti-
soliton pair, by an energy of 4�. In each order of per-
turbation theory less than 2s, the degenerate multiplet
of states mixes with states of higher energy, but due to
invariance under translation, the corrections brought to
each state are identical and the degeneracy is not split.
However, at order 2s, the degenerate multiplet is mapped
to itself. This causes it to split in energy and the states
to reorganize into a band. Indeed, ˆV 2s contains the
term (S�

k+1S
+
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2s and (S+
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2s. When acting on the
ket | ki flips the anti-aligned pair of spins at positions
k + 1, k + 2 and at k � 1, k respectively. It is easy to see
that flipping this pair of spins has the effect of translating
the soliton | ki !| k+2i and | ki !| k� 2i respectively.
All other terms in ˆV 2s map to states out of the degener-
ate subspace, either inserting a soliton anti-soliton pair
or changing the value of Sz to non extremal values, and
hence do not contribute to breaking the degeneracy. To
compute the splitting and the corresponding eigenstates,

we follow [11], we have to diagonalize the N ⇥N matrix
with components bµ,⌫ given by

bµ,⌫ = hµ| ˆVA2s�1|⌫i , µ, ⌫ = 1, 2, · · · , N (16)

where A2s�1
=
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we obtain
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The first product in Eqn.(19) comes from the two square
roots that accompany the action of the raising and lower-
ing operators, and the second product is a consequence of
the energy denominators. The plus or minus sign arises
because we have 2s � 1 products of negative energy de-
nominators in Eq.(17), so if s is integer, 2s�1 is odd and
we get a minus sign while for half-odd integer s, 2s � 1

is even and we get a plus sign. Similarly, one can show
that bµ,⌫ = C[hµ|⌫ + 2i + hµ|⌫ � 2i] defined periodically
of course. Thus we find that the matrix, [bµ,⌫ ], that we
must diagonalize is a circulant matrix [16]
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In this matrix each row element is moved one step to the
right, periodically, relative to the preceding row. The
eigenvalues and eigenvectors are well known. The jth
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where D is a determinantal pre-factor which contains no
� dependence. The factor of �Ns signifies the order of
degenerate perturbation theory as can be easily verified
from Eq.(4). The energy splitting, Eq.(14) is the general
formula for any even spin N . For N = 2 we recover the
results obtained previously[11, 15]. The factor sN can
be even or odd, depending on the value of the spin. For
half odd integer spin, and for N = 2(2k+1) we find � is
negative which means that | �i is the ground state and
| +i is the first excited state. In all other cases, for any
value of the spin s and N = 2(2k) we find � is positive
and then | +i is the ground state, | �i is the first excited
state.

Odd spin chain, frustration and solitons- When we con-
sider a periodic chain with an odd number of sites a soli-
ton like defect arises due to the spin frustration. The fully
anti-aligned Néel like state cannot complete periodically,
as it requires an even total number of spins. Thus there
has to be at least one pair of spins that is aligned. This
can come in the form up-up or down-down while all other
pairs of neighbouring spins are in the up-down or down-
up combination. As the total z component of the spin is
conserved, these states lie in orthogonal super-selection
sectors and never transform into each other. The posi-
tion of the soliton is arbitrary thus each sector is N -fold
degenerate. In the first case the total z component of the
spin is s while in the second case it is �s. We will without
loss of generality consider the s sector. These degenerate
states are denoted by | ki, k = 1, · · · , N where

| ki =|", #, ", #, ", · · · , ", ",|{z}
k,k+1th place

, · · · , ", # i (15)

in obvious notation. These states have the same energy
Es = �KNs2 from ˆH0 and in first order degenerate per-
turbation theory Es = �KNs2 � �(N � 1)s2 + �s2 =

(�K � �)Ns2 + 2�s2 and are split from the first excited
level, which requires the introduction of a soliton anti-
soliton pair, by an energy of 4�. In each order of per-
turbation theory less than 2s, the degenerate multiplet
of states mixes with states of higher energy, but due to
invariance under translation, the corrections brought to
each state are identical and the degeneracy is not split.
However, at order 2s, the degenerate multiplet is mapped
to itself. This causes it to split in energy and the states
to reorganize into a band. Indeed, ˆV 2s contains the
term (S�
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+
k+2)

2s and (S+
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2s. When acting on the
ket | ki flips the anti-aligned pair of spins at positions
k + 1, k + 2 and at k � 1, k respectively. It is easy to see
that flipping this pair of spins has the effect of translating
the soliton | ki !| k+2i and | ki !| k� 2i respectively.
All other terms in ˆV 2s map to states out of the degener-
ate subspace, either inserting a soliton anti-soliton pair
or changing the value of Sz to non extremal values, and
hence do not contribute to breaking the degeneracy. To
compute the splitting and the corresponding eigenstates,

we follow [11], we have to diagonalize the N ⇥N matrix
with components bµ,⌫ given by

bµ,⌫ = hµ| ˆVA2s�1|⌫i , µ, ⌫ = 1, 2, · · · , N (16)

where A2s�1
=
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Applying the operators 2s times on the right hand side
we obtain

bµ,1 = C[hµ|3i+ hµ|N � 1i] (18)

where C is given by
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The first product in Eqn.(19) comes from the two square
roots that accompany the action of the raising and lower-
ing operators, and the second product is a consequence of
the energy denominators. The plus or minus sign arises
because we have 2s � 1 products of negative energy de-
nominators in Eq.(17), so if s is integer, 2s�1 is odd and
we get a minus sign while for half-odd integer s, 2s � 1

is even and we get a plus sign. Similarly, one can show
that bµ,⌫ = C[hµ|⌫ + 2i + hµ|⌫ � 2i] defined periodically
of course. Thus we find that the matrix, [bµ,⌫ ], that we
must diagonalize is a circulant matrix [16]

[bµ,⌫ ] = C
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In this matrix each row element is moved one step to the
right, periodically, relative to the preceding row. The
eigenvalues and eigenvectors are well known. The jth

eigenvalue is given by

"j = b1,1 + b1,2!j + b1,3!
2
j + · · ·+ b1,N!N�1
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• Thus at this order the degenerate ground 
states are mixed.  To find the linear 
combination which yields the true ground 
state we must diagonalize the corresponding 
matrix of transition amplitudes.  It is of the 
form:
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where D is a determinantal pre-factor which contains no
� dependence. The factor of �Ns signifies the order of
degenerate perturbation theory as can be easily verified
from Eq.(4). The energy splitting, Eq.(14) is the general
formula for any even spin N . For N = 2 we recover the
results obtained previously[11, 15]. The factor sN can
be even or odd, depending on the value of the spin. For
half odd integer spin, and for N = 2(2k+1) we find � is
negative which means that | �i is the ground state and
| +i is the first excited state. In all other cases, for any
value of the spin s and N = 2(2k) we find � is positive
and then | +i is the ground state, | �i is the first excited
state.

Odd spin chain, frustration and solitons- When we con-
sider a periodic chain with an odd number of sites a soli-
ton like defect arises due to the spin frustration. The fully
anti-aligned Néel like state cannot complete periodically,
as it requires an even total number of spins. Thus there
has to be at least one pair of spins that is aligned. This
can come in the form up-up or down-down while all other
pairs of neighbouring spins are in the up-down or down-
up combination. As the total z component of the spin is
conserved, these states lie in orthogonal super-selection
sectors and never transform into each other. The posi-
tion of the soliton is arbitrary thus each sector is N -fold
degenerate. In the first case the total z component of the
spin is s while in the second case it is �s. We will without
loss of generality consider the s sector. These degenerate
states are denoted by | ki, k = 1, · · · , N where

| ki =|", #, ", #, ", · · · , ", ",|{z}
k,k+1th place

, · · · , ", # i (15)

in obvious notation. These states have the same energy
Es = �KNs2 from ˆH0 and in first order degenerate per-
turbation theory Es = �KNs2 � �(N � 1)s2 + �s2 =

(�K � �)Ns2 + 2�s2 and are split from the first excited
level, which requires the introduction of a soliton anti-
soliton pair, by an energy of 4�. In each order of per-
turbation theory less than 2s, the degenerate multiplet
of states mixes with states of higher energy, but due to
invariance under translation, the corrections brought to
each state are identical and the degeneracy is not split.
However, at order 2s, the degenerate multiplet is mapped
to itself. This causes it to split in energy and the states
to reorganize into a band. Indeed, ˆV 2s contains the
term (S�
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+
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2s and (S+
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2s. When acting on the
ket | ki flips the anti-aligned pair of spins at positions
k + 1, k + 2 and at k � 1, k respectively. It is easy to see
that flipping this pair of spins has the effect of translating
the soliton | ki !| k+2i and | ki !| k� 2i respectively.
All other terms in ˆV 2s map to states out of the degener-
ate subspace, either inserting a soliton anti-soliton pair
or changing the value of Sz to non extremal values, and
hence do not contribute to breaking the degeneracy. To
compute the splitting and the corresponding eigenstates,

we follow [11], we have to diagonalize the N ⇥N matrix
with components bµ,⌫ given by

bµ,⌫ = hµ| ˆVA2s�1|⌫i , µ, ⌫ = 1, 2, · · · , N (16)
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The first product in Eqn.(19) comes from the two square
roots that accompany the action of the raising and lower-
ing operators, and the second product is a consequence of
the energy denominators. The plus or minus sign arises
because we have 2s � 1 products of negative energy de-
nominators in Eq.(17), so if s is integer, 2s�1 is odd and
we get a minus sign while for half-odd integer s, 2s � 1

is even and we get a plus sign. Similarly, one can show
that bµ,⌫ = C[hµ|⌫ + 2i + hµ|⌫ � 2i] defined periodically
of course. Thus we find that the matrix, [bµ,⌫ ], that we
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In this matrix each row element is moved one step to the
right, periodically, relative to the preceding row. The
eigenvalues and eigenvectors are well known. The jth
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• Where the coefficient is calculable as: 
!

!

• The minus sign is for integer spin while the 
plus sign is for half odd integer spin. 

• The matrix is of the circulant type, they can 
be easily diagonalized using the roots of 
unity 
!

• where                      is the      ,         root of 
unity.
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where D is a determinantal pre-factor which contains no
� dependence. The factor of �Ns signifies the order of
degenerate perturbation theory as can be easily verified
from Eq.(4). The energy splitting, Eq.(14) is the general
formula for any even spin N . For N = 2 we recover the
results obtained previously[11, 15]. The factor sN can
be even or odd, depending on the value of the spin. For
half odd integer spin, and for N = 2(2k+1) we find � is
negative which means that | �i is the ground state and
| +i is the first excited state. In all other cases, for any
value of the spin s and N = 2(2k) we find � is positive
and then | +i is the ground state, | �i is the first excited
state.

Odd spin chain, frustration and solitons- When we con-
sider a periodic chain with an odd number of sites a soli-
ton like defect arises due to the spin frustration. The fully
anti-aligned Néel like state cannot complete periodically,
as it requires an even total number of spins. Thus there
has to be at least one pair of spins that is aligned. This
can come in the form up-up or down-down while all other
pairs of neighbouring spins are in the up-down or down-
up combination. As the total z component of the spin is
conserved, these states lie in orthogonal super-selection
sectors and never transform into each other. The posi-
tion of the soliton is arbitrary thus each sector is N -fold
degenerate. In the first case the total z component of the
spin is s while in the second case it is �s. We will without
loss of generality consider the s sector. These degenerate
states are denoted by | ki, k = 1, · · · , N where
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in obvious notation. These states have the same energy
Es = �KNs2 from ˆH0 and in first order degenerate per-
turbation theory Es = �KNs2 � �(N � 1)s2 + �s2 =

(�K � �)Ns2 + 2�s2 and are split from the first excited
level, which requires the introduction of a soliton anti-
soliton pair, by an energy of 4�. In each order of per-
turbation theory less than 2s, the degenerate multiplet
of states mixes with states of higher energy, but due to
invariance under translation, the corrections brought to
each state are identical and the degeneracy is not split.
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to itself. This causes it to split in energy and the states
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that flipping this pair of spins has the effect of translating
the soliton | ki !| k+2i and | ki !| k� 2i respectively.
All other terms in ˆV 2s map to states out of the degener-
ate subspace, either inserting a soliton anti-soliton pair
or changing the value of Sz to non extremal values, and
hence do not contribute to breaking the degeneracy. To
compute the splitting and the corresponding eigenstates,

we follow [11], we have to diagonalize the N ⇥N matrix
with components bµ,⌫ given by
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Applying the operators 2s times on the right hand side
we obtain

bµ,1 = C[hµ|3i+ hµ|N � 1i] (18)

where C is given by
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The first product in Eqn.(19) comes from the two square
roots that accompany the action of the raising and lower-
ing operators, and the second product is a consequence of
the energy denominators. The plus or minus sign arises
because we have 2s � 1 products of negative energy de-
nominators in Eq.(17), so if s is integer, 2s�1 is odd and
we get a minus sign while for half-odd integer s, 2s � 1

is even and we get a plus sign. Similarly, one can show
that bµ,⌫ = C[hµ|⌫ + 2i + hµ|⌫ � 2i] defined periodically
of course. Thus we find that the matrix, [bµ,⌫ ], that we
must diagonalize is a circulant matrix [16]

[bµ,⌫ ] = C

0
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0 0 1 0 · · · 1 0

0 0 0 1 · · · 0 1

1 0 0 0 1 · · · 0

... 1 0
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. . . · · · 0 0 0

0 1 · · · 1 · · · 0 0 0

1

CCCCCCCCA

. (20)

In this matrix each row element is moved one step to the
right, periodically, relative to the preceding row. The
eigenvalues and eigenvectors are well known. The jth

eigenvalue is given by

"j = b1,1 + b1,2!j + b1,3!
2
j + · · ·+ b1,N!N�1

j (21)

where !j = ei
2⇡j
N is the jth , N th root of unity with

corresponding eignvector | 2⇡j
N i = (1,!j ,!2

j , · · · ,!
N�1
j ),

3

where D is a determinantal pre-factor which contains no
� dependence. The factor of �Ns signifies the order of
degenerate perturbation theory as can be easily verified
from Eq.(4). The energy splitting, Eq.(14) is the general
formula for any even spin N . For N = 2 we recover the
results obtained previously[11, 15]. The factor sN can
be even or odd, depending on the value of the spin. For
half odd integer spin, and for N = 2(2k+1) we find � is
negative which means that | �i is the ground state and
| +i is the first excited state. In all other cases, for any
value of the spin s and N = 2(2k) we find � is positive
and then | +i is the ground state, | �i is the first excited
state.

Odd spin chain, frustration and solitons- When we con-
sider a periodic chain with an odd number of sites a soli-
ton like defect arises due to the spin frustration. The fully
anti-aligned Néel like state cannot complete periodically,
as it requires an even total number of spins. Thus there
has to be at least one pair of spins that is aligned. This
can come in the form up-up or down-down while all other
pairs of neighbouring spins are in the up-down or down-
up combination. As the total z component of the spin is
conserved, these states lie in orthogonal super-selection
sectors and never transform into each other. The posi-
tion of the soliton is arbitrary thus each sector is N -fold
degenerate. In the first case the total z component of the
spin is s while in the second case it is �s. We will without
loss of generality consider the s sector. These degenerate
states are denoted by | ki, k = 1, · · · , N where

| ki =|", #, ", #, ", · · · , ", ",|{z}
k,k+1th place

, · · · , ", # i (15)

in obvious notation. These states have the same energy
Es = �KNs2 from ˆH0 and in first order degenerate per-
turbation theory Es = �KNs2 � �(N � 1)s2 + �s2 =

(�K � �)Ns2 + 2�s2 and are split from the first excited
level, which requires the introduction of a soliton anti-
soliton pair, by an energy of 4�. In each order of per-
turbation theory less than 2s, the degenerate multiplet
of states mixes with states of higher energy, but due to
invariance under translation, the corrections brought to
each state are identical and the degeneracy is not split.
However, at order 2s, the degenerate multiplet is mapped
to itself. This causes it to split in energy and the states
to reorganize into a band. Indeed, ˆV 2s contains the
term (S�
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+
k+2)

2s and (S+
k�1S

�
k )

2s. When acting on the
ket | ki flips the anti-aligned pair of spins at positions
k + 1, k + 2 and at k � 1, k respectively. It is easy to see
that flipping this pair of spins has the effect of translating
the soliton | ki !| k+2i and | ki !| k� 2i respectively.
All other terms in ˆV 2s map to states out of the degener-
ate subspace, either inserting a soliton anti-soliton pair
or changing the value of Sz to non extremal values, and
hence do not contribute to breaking the degeneracy. To
compute the splitting and the corresponding eigenstates,

we follow [11], we have to diagonalize the N ⇥N matrix
with components bµ,⌫ given by

bµ,⌫ = hµ| ˆVA2s�1|⌫i , µ, ⌫ = 1, 2, · · · , N (16)

where A2s�1
=

⇣
Q
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, and Q = 1�
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Applying the operators 2s times on the right hand side
we obtain

bµ,1 = C[hµ|3i+ hµ|N � 1i] (18)

where C is given by
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The first product in Eqn.(19) comes from the two square
roots that accompany the action of the raising and lower-
ing operators, and the second product is a consequence of
the energy denominators. The plus or minus sign arises
because we have 2s � 1 products of negative energy de-
nominators in Eq.(17), so if s is integer, 2s�1 is odd and
we get a minus sign while for half-odd integer s, 2s � 1

is even and we get a plus sign. Similarly, one can show
that bµ,⌫ = C[hµ|⌫ + 2i + hµ|⌫ � 2i] defined periodically
of course. Thus we find that the matrix, [bµ,⌫ ], that we
must diagonalize is a circulant matrix [16]

[bµ,⌫ ] = C

0
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0 0 1 0 · · · 1 0
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In this matrix each row element is moved one step to the
right, periodically, relative to the preceding row. The
eigenvalues and eigenvectors are well known. The jth

eigenvalue is given by

"j = b1,1 + b1,2!j + b1,3!
2
j + · · ·+ b1,N!N�1

j (21)

where !j = ei
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N is the jth , N th root of unity with

corresponding eignvector | 2⇡j
N i = (1,!j ,!2
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where D is a determinantal pre-factor which contains no
� dependence. The factor of �Ns signifies the order of
degenerate perturbation theory as can be easily verified
from Eq.(4). The energy splitting, Eq.(14) is the general
formula for any even spin N . For N = 2 we recover the
results obtained previously[11, 15]. The factor sN can
be even or odd, depending on the value of the spin. For
half odd integer spin, and for N = 2(2k+1) we find � is
negative which means that | �i is the ground state and
| +i is the first excited state. In all other cases, for any
value of the spin s and N = 2(2k) we find � is positive
and then | +i is the ground state, | �i is the first excited
state.

Odd spin chain, frustration and solitons- When we con-
sider a periodic chain with an odd number of sites a soli-
ton like defect arises due to the spin frustration. The fully
anti-aligned Néel like state cannot complete periodically,
as it requires an even total number of spins. Thus there
has to be at least one pair of spins that is aligned. This
can come in the form up-up or down-down while all other
pairs of neighbouring spins are in the up-down or down-
up combination. As the total z component of the spin is
conserved, these states lie in orthogonal super-selection
sectors and never transform into each other. The posi-
tion of the soliton is arbitrary thus each sector is N -fold
degenerate. In the first case the total z component of the
spin is s while in the second case it is �s. We will without
loss of generality consider the s sector. These degenerate
states are denoted by | ki, k = 1, · · · , N where

| ki =|", #, ", #, ", · · · , ", ",|{z}
k,k+1th place

, · · · , ", # i (15)

in obvious notation. These states have the same energy
Es = �KNs2 from ˆH0 and in first order degenerate per-
turbation theory Es = �KNs2 � �(N � 1)s2 + �s2 =

(�K � �)Ns2 + 2�s2 and are split from the first excited
level, which requires the introduction of a soliton anti-
soliton pair, by an energy of 4�. In each order of per-
turbation theory less than 2s, the degenerate multiplet
of states mixes with states of higher energy, but due to
invariance under translation, the corrections brought to
each state are identical and the degeneracy is not split.
However, at order 2s, the degenerate multiplet is mapped
to itself. This causes it to split in energy and the states
to reorganize into a band. Indeed, ˆV 2s contains the
term (S�
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+
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2s and (S+
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2s. When acting on the
ket | ki flips the anti-aligned pair of spins at positions
k + 1, k + 2 and at k � 1, k respectively. It is easy to see
that flipping this pair of spins has the effect of translating
the soliton | ki !| k+2i and | ki !| k� 2i respectively.
All other terms in ˆV 2s map to states out of the degener-
ate subspace, either inserting a soliton anti-soliton pair
or changing the value of Sz to non extremal values, and
hence do not contribute to breaking the degeneracy. To
compute the splitting and the corresponding eigenstates,

we follow [11], we have to diagonalize the N ⇥N matrix
with components bµ,⌫ given by

bµ,⌫ = hµ| ˆVA2s�1|⌫i , µ, ⌫ = 1, 2, · · · , N (16)

where A2s�1
=
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, and Q = 1�
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Applying the operators 2s times on the right hand side
we obtain

bµ,1 = C[hµ|3i+ hµ|N � 1i] (18)

where C is given by

C = ±
✓
�

2

◆2s 2sY

m=1

m(2s�m+ 1)

2s�1Y

m=1

1

Km(2s�m)

= ±K

✓
�

2K

◆2s 
(2s)!

(2s� 1)!

�2
= ±4Ks2

✓
�

2K

◆2s

.

(19)

The first product in Eqn.(19) comes from the two square
roots that accompany the action of the raising and lower-
ing operators, and the second product is a consequence of
the energy denominators. The plus or minus sign arises
because we have 2s � 1 products of negative energy de-
nominators in Eq.(17), so if s is integer, 2s�1 is odd and
we get a minus sign while for half-odd integer s, 2s � 1

is even and we get a plus sign. Similarly, one can show
that bµ,⌫ = C[hµ|⌫ + 2i + hµ|⌫ � 2i] defined periodically
of course. Thus we find that the matrix, [bµ,⌫ ], that we
must diagonalize is a circulant matrix [16]

[bµ,⌫ ] = C
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In this matrix each row element is moved one step to the
right, periodically, relative to the preceding row. The
eigenvalues and eigenvectors are well known. The jth

eigenvalue is given by

"j = b1,1 + b1,2!j + b1,3!
2
j + · · ·+ b1,N!N�1

j (21)
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N is the jth , N th root of unity with

corresponding eignvector | 2⇡j
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where D is a determinantal pre-factor which contains no
� dependence. The factor of �Ns signifies the order of
degenerate perturbation theory as can be easily verified
from Eq.(4). The energy splitting, Eq.(14) is the general
formula for any even spin N . For N = 2 we recover the
results obtained previously[11, 15]. The factor sN can
be even or odd, depending on the value of the spin. For
half odd integer spin, and for N = 2(2k+1) we find � is
negative which means that | �i is the ground state and
| +i is the first excited state. In all other cases, for any
value of the spin s and N = 2(2k) we find � is positive
and then | +i is the ground state, | �i is the first excited
state.

Odd spin chain, frustration and solitons- When we con-
sider a periodic chain with an odd number of sites a soli-
ton like defect arises due to the spin frustration. The fully
anti-aligned Néel like state cannot complete periodically,
as it requires an even total number of spins. Thus there
has to be at least one pair of spins that is aligned. This
can come in the form up-up or down-down while all other
pairs of neighbouring spins are in the up-down or down-
up combination. As the total z component of the spin is
conserved, these states lie in orthogonal super-selection
sectors and never transform into each other. The posi-
tion of the soliton is arbitrary thus each sector is N -fold
degenerate. In the first case the total z component of the
spin is s while in the second case it is �s. We will without
loss of generality consider the s sector. These degenerate
states are denoted by | ki, k = 1, · · · , N where

| ki =|", #, ", #, ", · · · , ", ",|{z}
k,k+1th place

, · · · , ", # i (15)

in obvious notation. These states have the same energy
Es = �KNs2 from ˆH0 and in first order degenerate per-
turbation theory Es = �KNs2 � �(N � 1)s2 + �s2 =

(�K � �)Ns2 + 2�s2 and are split from the first excited
level, which requires the introduction of a soliton anti-
soliton pair, by an energy of 4�. In each order of per-
turbation theory less than 2s, the degenerate multiplet
of states mixes with states of higher energy, but due to
invariance under translation, the corrections brought to
each state are identical and the degeneracy is not split.
However, at order 2s, the degenerate multiplet is mapped
to itself. This causes it to split in energy and the states
to reorganize into a band. Indeed, ˆV 2s contains the
term (S�

k+1S
+
k+2)

2s and (S+
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2s. When acting on the
ket | ki flips the anti-aligned pair of spins at positions
k + 1, k + 2 and at k � 1, k respectively. It is easy to see
that flipping this pair of spins has the effect of translating
the soliton | ki !| k+2i and | ki !| k� 2i respectively.
All other terms in ˆV 2s map to states out of the degener-
ate subspace, either inserting a soliton anti-soliton pair
or changing the value of Sz to non extremal values, and
hence do not contribute to breaking the degeneracy. To
compute the splitting and the corresponding eigenstates,

we follow [11], we have to diagonalize the N ⇥N matrix
with components bµ,⌫ given by

bµ,⌫ = hµ| ˆVA2s�1|⌫i , µ, ⌫ = 1, 2, · · · , N (16)

where A2s�1
=
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Applying the operators 2s times on the right hand side
we obtain

bµ,1 = C[hµ|3i+ hµ|N � 1i] (18)

where C is given by

C = ±
✓
�

2

◆2s 2sY

m=1

m(2s�m+ 1)

2s�1Y

m=1

1

Km(2s�m)

= ±K

✓
�

2K

◆2s 
(2s)!

(2s� 1)!

�2
= ±4Ks2

✓
�

2K

◆2s

.

(19)

The first product in Eqn.(19) comes from the two square
roots that accompany the action of the raising and lower-
ing operators, and the second product is a consequence of
the energy denominators. The plus or minus sign arises
because we have 2s � 1 products of negative energy de-
nominators in Eq.(17), so if s is integer, 2s�1 is odd and
we get a minus sign while for half-odd integer s, 2s � 1

is even and we get a plus sign. Similarly, one can show
that bµ,⌫ = C[hµ|⌫ + 2i + hµ|⌫ � 2i] defined periodically
of course. Thus we find that the matrix, [bµ,⌫ ], that we
must diagonalize is a circulant matrix [16]
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In this matrix each row element is moved one step to the
right, periodically, relative to the preceding row. The
eigenvalues and eigenvectors are well known. The jth

eigenvalue is given by
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where D is a determinantal pre-factor which contains no
� dependence. The factor of �Ns signifies the order of
degenerate perturbation theory as can be easily verified
from Eq.(4). The energy splitting, Eq.(14) is the general
formula for any even spin N . For N = 2 we recover the
results obtained previously[11, 15]. The factor sN can
be even or odd, depending on the value of the spin. For
half odd integer spin, and for N = 2(2k+1) we find � is
negative which means that | �i is the ground state and
| +i is the first excited state. In all other cases, for any
value of the spin s and N = 2(2k) we find � is positive
and then | +i is the ground state, | �i is the first excited
state.

Odd spin chain, frustration and solitons- When we con-
sider a periodic chain with an odd number of sites a soli-
ton like defect arises due to the spin frustration. The fully
anti-aligned Néel like state cannot complete periodically,
as it requires an even total number of spins. Thus there
has to be at least one pair of spins that is aligned. This
can come in the form up-up or down-down while all other
pairs of neighbouring spins are in the up-down or down-
up combination. As the total z component of the spin is
conserved, these states lie in orthogonal super-selection
sectors and never transform into each other. The posi-
tion of the soliton is arbitrary thus each sector is N -fold
degenerate. In the first case the total z component of the
spin is s while in the second case it is �s. We will without
loss of generality consider the s sector. These degenerate
states are denoted by | ki, k = 1, · · · , N where

| ki =|", #, ", #, ", · · · , ", ",|{z}
k,k+1th place

, · · · , ", # i (15)

in obvious notation. These states have the same energy
Es = �KNs2 from ˆH0 and in first order degenerate per-
turbation theory Es = �KNs2 � �(N � 1)s2 + �s2 =

(�K � �)Ns2 + 2�s2 and are split from the first excited
level, which requires the introduction of a soliton anti-
soliton pair, by an energy of 4�. In each order of per-
turbation theory less than 2s, the degenerate multiplet
of states mixes with states of higher energy, but due to
invariance under translation, the corrections brought to
each state are identical and the degeneracy is not split.
However, at order 2s, the degenerate multiplet is mapped
to itself. This causes it to split in energy and the states
to reorganize into a band. Indeed, ˆV 2s contains the
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2s. When acting on the
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k + 1, k + 2 and at k � 1, k respectively. It is easy to see
that flipping this pair of spins has the effect of translating
the soliton | ki !| k+2i and | ki !| k� 2i respectively.
All other terms in ˆV 2s map to states out of the degener-
ate subspace, either inserting a soliton anti-soliton pair
or changing the value of Sz to non extremal values, and
hence do not contribute to breaking the degeneracy. To
compute the splitting and the corresponding eigenstates,

we follow [11], we have to diagonalize the N ⇥N matrix
with components bµ,⌫ given by

bµ,⌫ = hµ| ˆVA2s�1|⌫i , µ, ⌫ = 1, 2, · · · , N (16)
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Applying the operators 2s times on the right hand side
we obtain

bµ,1 = C[hµ|3i+ hµ|N � 1i] (18)
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The first product in Eqn.(19) comes from the two square
roots that accompany the action of the raising and lower-
ing operators, and the second product is a consequence of
the energy denominators. The plus or minus sign arises
because we have 2s � 1 products of negative energy de-
nominators in Eq.(17), so if s is integer, 2s�1 is odd and
we get a minus sign while for half-odd integer s, 2s � 1

is even and we get a plus sign. Similarly, one can show
that bµ,⌫ = C[hµ|⌫ + 2i + hµ|⌫ � 2i] defined periodically
of course. Thus we find that the matrix, [bµ,⌫ ], that we
must diagonalize is a circulant matrix [16]
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In this matrix each row element is moved one step to the
right, periodically, relative to the preceding row. The
eigenvalues and eigenvectors are well known. The jth

eigenvalue is given by

"j = b1,1 + b1,2!j + b1,3!
2
j + · · ·+ b1,N!N�1

j (21)

where !j = ei
2⇡j
N is the jth , N th root of unity with

corresponding eignvector | 2⇡j
N i = (1,!j ,!2

j , · · · ,!
N�1
j ),

3

where D is a determinantal pre-factor which contains no
� dependence. The factor of �Ns signifies the order of
degenerate perturbation theory as can be easily verified
from Eq.(4). The energy splitting, Eq.(14) is the general
formula for any even spin N . For N = 2 we recover the
results obtained previously[11, 15]. The factor sN can
be even or odd, depending on the value of the spin. For
half odd integer spin, and for N = 2(2k+1) we find � is
negative which means that | �i is the ground state and
| +i is the first excited state. In all other cases, for any
value of the spin s and N = 2(2k) we find � is positive
and then | +i is the ground state, | �i is the first excited
state.

Odd spin chain, frustration and solitons- When we con-
sider a periodic chain with an odd number of sites a soli-
ton like defect arises due to the spin frustration. The fully
anti-aligned Néel like state cannot complete periodically,
as it requires an even total number of spins. Thus there
has to be at least one pair of spins that is aligned. This
can come in the form up-up or down-down while all other
pairs of neighbouring spins are in the up-down or down-
up combination. As the total z component of the spin is
conserved, these states lie in orthogonal super-selection
sectors and never transform into each other. The posi-
tion of the soliton is arbitrary thus each sector is N -fold
degenerate. In the first case the total z component of the
spin is s while in the second case it is �s. We will without
loss of generality consider the s sector. These degenerate
states are denoted by | ki, k = 1, · · · , N where

| ki =|", #, ", #, ", · · · , ", ",|{z}
k,k+1th place

, · · · , ", # i (15)

in obvious notation. These states have the same energy
Es = �KNs2 from ˆH0 and in first order degenerate per-
turbation theory Es = �KNs2 � �(N � 1)s2 + �s2 =

(�K � �)Ns2 + 2�s2 and are split from the first excited
level, which requires the introduction of a soliton anti-
soliton pair, by an energy of 4�. In each order of per-
turbation theory less than 2s, the degenerate multiplet
of states mixes with states of higher energy, but due to
invariance under translation, the corrections brought to
each state are identical and the degeneracy is not split.
However, at order 2s, the degenerate multiplet is mapped
to itself. This causes it to split in energy and the states
to reorganize into a band. Indeed, ˆV 2s contains the
term (S�

k+1S
+
k+2)

2s and (S+
k�1S

�
k )

2s. When acting on the
ket | ki flips the anti-aligned pair of spins at positions
k + 1, k + 2 and at k � 1, k respectively. It is easy to see
that flipping this pair of spins has the effect of translating
the soliton | ki !| k+2i and | ki !| k� 2i respectively.
All other terms in ˆV 2s map to states out of the degener-
ate subspace, either inserting a soliton anti-soliton pair
or changing the value of Sz to non extremal values, and
hence do not contribute to breaking the degeneracy. To
compute the splitting and the corresponding eigenstates,

we follow [11], we have to diagonalize the N ⇥N matrix
with components bµ,⌫ given by

bµ,⌫ = hµ| ˆVA2s�1|⌫i , µ, ⌫ = 1, 2, · · · , N (16)

where A2s�1
=

⇣
Q

Es�Ĥ0

ˆV
⌘2s�1

, and Q = 1�
P

| µihµ |.
The calculation of the components is straightforward,
looking at bµ,1 we find

bµ,1 =

✓
�
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◆2s
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2 S+

3

✓
Q

Es � ˆH0

S�
2 S+

3

◆2s�1
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✓
�

2

◆2s

hµ|S+
NS�

1

✓
Q

Es � ˆH0

S+
NS�

1

◆2s�1

|1i .

(17)

Applying the operators 2s times on the right hand side
we obtain

bµ,1 = C[hµ|3i+ hµ|N � 1i] (18)

where C is given by

C = ±
✓
�

2

◆2s 2sY

m=1

m(2s�m+ 1)

2s�1Y

m=1

1

Km(2s�m)

= ±K

✓
�

2K

◆2s 
(2s)!

(2s� 1)!

�2
= ±4Ks2

✓
�

2K

◆2s

.

(19)

The first product in Eqn.(19) comes from the two square
roots that accompany the action of the raising and lower-
ing operators, and the second product is a consequence of
the energy denominators. The plus or minus sign arises
because we have 2s � 1 products of negative energy de-
nominators in Eq.(17), so if s is integer, 2s�1 is odd and
we get a minus sign while for half-odd integer s, 2s � 1

is even and we get a plus sign. Similarly, one can show
that bµ,⌫ = C[hµ|⌫ + 2i + hµ|⌫ � 2i] defined periodically
of course. Thus we find that the matrix, [bµ,⌫ ], that we
must diagonalize is a circulant matrix [16]

[bµ,⌫ ] = C

0

BBBBBBBB@

0 0 1 0 · · · 1 0

0 0 0 1 · · · 0 1

1 0 0 0 1 · · · 0

... 1 0

. . . · · ·
. . .

1 · · ·
. . . · · · 0 0 0

0 1 · · · 1 · · · 0 0 0

1

CCCCCCCCA

. (20)

In this matrix each row element is moved one step to the
right, periodically, relative to the preceding row. The
eigenvalues and eigenvectors are well known. The jth

eigenvalue is given by

"j = b1,1 + b1,2!j + b1,3!
2
j + · · ·+ b1,N!N�1

j (21)

where !j = ei
2⇡j
N is the jth , N th root of unity with

corresponding eignvector | 2⇡j
N i = (1,!j ,!2

j , · · · ,!
N�1
j ),

3

where D is a determinantal pre-factor which contains no
� dependence. The factor of �Ns signifies the order of
degenerate perturbation theory as can be easily verified
from Eq.(4). The energy splitting, Eq.(14) is the general
formula for any even spin N . For N = 2 we recover the
results obtained previously[11, 15]. The factor sN can
be even or odd, depending on the value of the spin. For
half odd integer spin, and for N = 2(2k+1) we find � is
negative which means that | �i is the ground state and
| +i is the first excited state. In all other cases, for any
value of the spin s and N = 2(2k) we find � is positive
and then | +i is the ground state, | �i is the first excited
state.

Odd spin chain, frustration and solitons- When we con-
sider a periodic chain with an odd number of sites a soli-
ton like defect arises due to the spin frustration. The fully
anti-aligned Néel like state cannot complete periodically,
as it requires an even total number of spins. Thus there
has to be at least one pair of spins that is aligned. This
can come in the form up-up or down-down while all other
pairs of neighbouring spins are in the up-down or down-
up combination. As the total z component of the spin is
conserved, these states lie in orthogonal super-selection
sectors and never transform into each other. The posi-
tion of the soliton is arbitrary thus each sector is N -fold
degenerate. In the first case the total z component of the
spin is s while in the second case it is �s. We will without
loss of generality consider the s sector. These degenerate
states are denoted by | ki, k = 1, · · · , N where

| ki =|", #, ", #, ", · · · , ", ",|{z}
k,k+1th place

, · · · , ", # i (15)

in obvious notation. These states have the same energy
Es = �KNs2 from ˆH0 and in first order degenerate per-
turbation theory Es = �KNs2 � �(N � 1)s2 + �s2 =

(�K � �)Ns2 + 2�s2 and are split from the first excited
level, which requires the introduction of a soliton anti-
soliton pair, by an energy of 4�. In each order of per-
turbation theory less than 2s, the degenerate multiplet
of states mixes with states of higher energy, but due to
invariance under translation, the corrections brought to
each state are identical and the degeneracy is not split.
However, at order 2s, the degenerate multiplet is mapped
to itself. This causes it to split in energy and the states
to reorganize into a band. Indeed, ˆV 2s contains the
term (S�

k+1S
+
k+2)

2s and (S+
k�1S

�
k )

2s. When acting on the
ket | ki flips the anti-aligned pair of spins at positions
k + 1, k + 2 and at k � 1, k respectively. It is easy to see
that flipping this pair of spins has the effect of translating
the soliton | ki !| k+2i and | ki !| k� 2i respectively.
All other terms in ˆV 2s map to states out of the degener-
ate subspace, either inserting a soliton anti-soliton pair
or changing the value of Sz to non extremal values, and
hence do not contribute to breaking the degeneracy. To
compute the splitting and the corresponding eigenstates,

we follow [11], we have to diagonalize the N ⇥N matrix
with components bµ,⌫ given by

bµ,⌫ = hµ| ˆVA2s�1|⌫i , µ, ⌫ = 1, 2, · · · , N (16)

where A2s�1
=

⇣
Q

Es�Ĥ0

ˆV
⌘2s�1

, and Q = 1�
P

| µihµ |.
The calculation of the components is straightforward,
looking at bµ,1 we find

bµ,1 =

✓
�

2

◆2s

hµ|S�
2 S+

3

✓
Q

Es � ˆH0

S�
2 S+

3

◆2s�1

|1i

+

✓
�

2

◆2s

hµ|S+
NS�

1

✓
Q

Es � ˆH0

S+
NS�

1

◆2s�1

|1i .

(17)

Applying the operators 2s times on the right hand side
we obtain

bµ,1 = C[hµ|3i+ hµ|N � 1i] (18)

where C is given by

C = ±
✓
�

2

◆2s 2sY

m=1

m(2s�m+ 1)

2s�1Y

m=1

1

Km(2s�m)

= ±K

✓
�

2K

◆2s 
(2s)!

(2s� 1)!

�2
= ±4Ks2

✓
�

2K

◆2s

.

(19)

The first product in Eqn.(19) comes from the two square
roots that accompany the action of the raising and lower-
ing operators, and the second product is a consequence of
the energy denominators. The plus or minus sign arises
because we have 2s � 1 products of negative energy de-
nominators in Eq.(17), so if s is integer, 2s�1 is odd and
we get a minus sign while for half-odd integer s, 2s � 1

is even and we get a plus sign. Similarly, one can show
that bµ,⌫ = C[hµ|⌫ + 2i + hµ|⌫ � 2i] defined periodically
of course. Thus we find that the matrix, [bµ,⌫ ], that we
must diagonalize is a circulant matrix [16]

[bµ,⌫ ] = C

0

BBBBBBBB@

0 0 1 0 · · · 1 0

0 0 0 1 · · · 0 1

1 0 0 0 1 · · · 0

... 1 0

. . . · · ·
. . .

1 · · ·
. . . · · · 0 0 0

0 1 · · · 1 · · · 0 0 0

1

CCCCCCCCA

. (20)

In this matrix each row element is moved one step to the
right, periodically, relative to the preceding row. The
eigenvalues and eigenvectors are well known. The jth

eigenvalue is given by

"j = b1,1 + b1,2!j + b1,3!
2
j + · · ·+ b1,N!N�1

j (21)

where !j = ei
2⇡j
N is the jth , N th root of unity with

corresponding eignvector | 2⇡j
N i = (1,!j ,!2

j , · · · ,!
N�1
j ),

20



• As there are only two non-zero components 
in the first (any) row, we get:

4

for j = 0, 1, 2, · · · , N � 1. For our matrix, Eq.(20), the
only nonzero coefficients are b1,3 and b1,N�1, thus the one
soliton energy bands are

"j = C(!2
j + !N�2

j ) = C(!2
j + !�2

j )

= 2C cos

✓
4⇡j

N

◆
. (22)

Introducing the Brillouin zone momentum q = j⇡/N , the
energy bands Eq.(22) can be written as

"q = 2C cos (4q) (23)

which is gapless unlike the magnon dispersion in Eq.(2)
but is doubly degenerate as the cosine passes through
two periods in the Brillouin zone. The exact spectrum
is symmetric about the value N/2. With [x] the greatest
integer not greater than x, the states for j = [N/2] � k
and j = [N/2]+k+1 for k = 0, 1, 2, · · · , [N/2]�1 are de-
generate as cos

⇣
4⇡([N/2]�k)

N

⌘
= cos

⇣
4⇡([N/2]+k+1)

N

⌘
since

[N/2] = N/2� 1/2. However the state with k = [N/2] is
not paired, only j = 0 is allowed. When s is and integer,
C is negative and the unpaired state j = 0 is the ground
state which is then non-degenerate, but for s a half odd
integer, C is positive, and the ground states are the de-
generate pair with j = [N/2], [N/2] + 1 in accordance
with Kramer’s theorem [17]. However, in the thermo-
dynamic limit, N ! 1, the spectrum simply becomes
doubly degenerate for all values of the spin and gapless.

Conclusion- We have found the ground state and the
low lying spectrum for a periodic spin chain in the limit
of large spin, large z-component anisotropy and and
weak antiferromagnetic exchange coupling between near-
est neighbours. For even number of sites, we find that the
ground state is unique and corresponds to the symmet-
ric or the anti-symmetric superposition of the two fully
anti-aligned Néel states. Then the other combination is
split in energy, proportional to

�
�
2K

�sN . We find this re-
sult through an instanton using the spin coherent state
path integral. Thus in the thermodynamic limit, the two
Néel states are the degenerate ground states, actually
allowing for long range order. However, there is no spon-
taneous symmetry breaking, there is explicit symmetry
breaking as the z-component anisotropy explicitly breaks
the rotational invariance. There is no massless excitation.
The first excited state of this system corresponds to the
creation of a soliton anti-soliton pair, with a minimum
energy cost of 4�. The magnons (spin waves) are very
highly gapped, due to the large anisotropy, with a mini-
mum energy cost ⇠ K. For an odd number of sites the
situation is markedly different. There is no fully aligned
Néel state as the system is frustrated. The chain must
contain at least one soliton. The soliton can be up-up
or down-down giving a total z component of spin s or

�s respectively. Since the z-component of the spin is
conserved, theses states are in orthogonal super-selection
sectors. As the position of the soliton is arbitrary, the
ground state in each sector is nominally N fold degen-
erate. Perturbation to the order 2s mixes these states
into each other, breaking the degeneracy and creating a
gapless band and destroying the possibility of long range
order. In the thermodynamic limit, the ground state is
doubly degenerate in each sector.
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• The spectrum is symmetric about N/2: 
!

!

!

• Except, the state at k=[N/2] is not paired. 
• For integer spins             this state is the 

unique ground state. 
• For half-odd integer spins            and the 

ground state is doubly degenerate, in 
accordance with Kramer’s theorem.  

4

for j = 0, 1, 2, · · · , N � 1. For our matrix, Eq.(20), the
only nonzero coefficients are b1,3 and b1,N�1, thus the one
soliton energy bands are
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Introducing the Brillouin zone momentum q = j⇡/N , the
energy bands Eq.(22) can be written as

"q = 2C cos (4q) (23)

which is gapless unlike the magnon dispersion in Eq.(2)
but is doubly degenerate as the cosine passes through
two periods in the Brillouin zone. The exact spectrum
is symmetric about the value N/2. With [x] the greatest
integer not greater than x, the states for j = [N/2] � k
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generate as cos
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[N/2] = N/2� 1/2. However the state with k = [N/2] is
not paired, only j = 0 is allowed. When s is and integer,
C is negative and the unpaired state j = 0 is the ground
state which is then non-degenerate, but for s a half odd
integer, C is positive, and the ground states are the de-
generate pair with j = [N/2], [N/2] + 1 in accordance
with Kramer’s theorem [17]. However, in the thermo-
dynamic limit, N ! 1, the spectrum simply becomes
doubly degenerate for all values of the spin and gapless.

Conclusion- We have found the ground state and the
low lying spectrum for a periodic spin chain in the limit
of large spin, large z-component anisotropy and and
weak antiferromagnetic exchange coupling between near-
est neighbours. For even number of sites, we find that the
ground state is unique and corresponds to the symmet-
ric or the anti-symmetric superposition of the two fully
anti-aligned Néel states. Then the other combination is
split in energy, proportional to

�
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2K

�sN . We find this re-
sult through an instanton using the spin coherent state
path integral. Thus in the thermodynamic limit, the two
Néel states are the degenerate ground states, actually
allowing for long range order. However, there is no spon-
taneous symmetry breaking, there is explicit symmetry
breaking as the z-component anisotropy explicitly breaks
the rotational invariance. There is no massless excitation.
The first excited state of this system corresponds to the
creation of a soliton anti-soliton pair, with a minimum
energy cost of 4�. The magnons (spin waves) are very
highly gapped, due to the large anisotropy, with a mini-
mum energy cost ⇠ K. For an odd number of sites the
situation is markedly different. There is no fully aligned
Néel state as the system is frustrated. The chain must
contain at least one soliton. The soliton can be up-up
or down-down giving a total z component of spin s or

�s respectively. Since the z-component of the spin is
conserved, theses states are in orthogonal super-selection
sectors. As the position of the soliton is arbitrary, the
ground state in each sector is nominally N fold degen-
erate. Perturbation to the order 2s mixes these states
into each other, breaking the degeneracy and creating a
gapless band and destroying the possibility of long range
order. In the thermodynamic limit, the ground state is
doubly degenerate in each sector.
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for j = 0, 1, 2, · · · , N � 1. For our matrix, Eq.(20), the
only nonzero coefficients are b1,3 and b1,N�1, thus the one
soliton energy bands are
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Introducing the Brillouin zone momentum q = j⇡/N , the
energy bands Eq.(22) can be written as

"q = 2C cos (4q) (23)

which is gapless unlike the magnon dispersion in Eq.(2)
but is doubly degenerate as the cosine passes through
two periods in the Brillouin zone. The exact spectrum
is symmetric about the value N/2. With [x] the greatest
integer not greater than x, the states for j = [N/2] � k
and j = [N/2]+k+1 for k = 0, 1, 2, · · · , [N/2]�1 are de-
generate as cos

⇣
4⇡([N/2]�k)

N

⌘
= cos

⇣
4⇡([N/2]+k+1)

N

⌘
since

[N/2] = N/2� 1/2. However the state with k = [N/2] is
not paired, only j = 0 is allowed. When s is and integer,
C is negative and the unpaired state j = 0 is the ground
state which is then non-degenerate, but for s a half odd
integer, C is positive, and the ground states are the de-
generate pair with j = [N/2], [N/2] + 1 in accordance
with Kramer’s theorem [17]. However, in the thermo-
dynamic limit, N ! 1, the spectrum simply becomes
doubly degenerate for all values of the spin and gapless.

Conclusion- We have found the ground state and the
low lying spectrum for a periodic spin chain in the limit
of large spin, large z-component anisotropy and and
weak antiferromagnetic exchange coupling between near-
est neighbours. For even number of sites, we find that the
ground state is unique and corresponds to the symmet-
ric or the anti-symmetric superposition of the two fully
anti-aligned Néel states. Then the other combination is
split in energy, proportional to

�
�
2K

�sN . We find this re-
sult through an instanton using the spin coherent state
path integral. Thus in the thermodynamic limit, the two
Néel states are the degenerate ground states, actually
allowing for long range order. However, there is no spon-
taneous symmetry breaking, there is explicit symmetry
breaking as the z-component anisotropy explicitly breaks
the rotational invariance. There is no massless excitation.
The first excited state of this system corresponds to the
creation of a soliton anti-soliton pair, with a minimum
energy cost of 4�. The magnons (spin waves) are very
highly gapped, due to the large anisotropy, with a mini-
mum energy cost ⇠ K. For an odd number of sites the
situation is markedly different. There is no fully aligned
Néel state as the system is frustrated. The chain must
contain at least one soliton. The soliton can be up-up
or down-down giving a total z component of spin s or

�s respectively. Since the z-component of the spin is
conserved, theses states are in orthogonal super-selection
sectors. As the position of the soliton is arbitrary, the
ground state in each sector is nominally N fold degen-
erate. Perturbation to the order 2s mixes these states
into each other, breaking the degeneracy and creating a
gapless band and destroying the possibility of long range
order. In the thermodynamic limit, the ground state is
doubly degenerate in each sector.
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