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Haldane like spin chain

e We study a periodic chain of spins, in the
large spin limit with Hamiltonian:

H — —KZSZZ +)\Z§Z ' §i+1
i=1 i=1
e The coupling constant K 1s assumed to be
large, compared to )\ . This is the opposite
limit from what Haldane took 1n his seminal
paper:
H=\J125,08,°S,+, +AS,.°S, +,% + b(S ,9)?]
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e For zero coupling, the ground state is 2%
fold degenerate, with each spin being fully
up or fully down along the z axis.

e With the added exchange interaction, the
spin chain tries to assume a Neel state.

e For an even number of spins, this 1s possible
without frustration, but for an odd number
of spins, there must be at least one defect in
the N¢el order.

e We find the low lying excitations of the
even and odd spin cases remarkably
different.



The spin coherent states path

integral
e We use the path integral to compute
transition amplitudes:

(Wle P x) = / D{b;,¢;} e °F

e Where the Euclidean action 1s given by:
Lp=is) ¢(1—cosb;)+ K sin®6;

+A i[sin 0, sin 0;., 1 cos(; — dizr1) + cos b; cos 0;41]
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e The Feynman path integral in Minkowski
space 1s not a well defined mathematical
expression.

e The integral 1s not absolutely convergent.

e Consider the two dimensional example:

/ da;dyei($2+y2)

Changing variables to polar coordinates
we have

.
277/0 drre’ = (7r/2')e"7’12 |gc = 00
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e The actual definition of the path integral 1s
via the Euclidean path integral, with
Imaginary time.
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e Then the Euclidean functional integral
defined by:

Zg[J] = % /% —Splél+ [ 16
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e sometimes the Euclidean action 1s complex
e such terms are linear 1in the time derivative

e hence the i 1n front of the Minkowski space
action 1s not cancelled, indeed:

dt@t — /dT@T

thus the Euclidean action is in general complex
and the functional integral 1s of the form:

1 . .
ZE e N /qu e_bE[(rb]_'_Z‘Stop.[d)]
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e This is not an great problem to
mathematical definition of the
integral.

the proper
functional

e However, the usual perturbative paradigm of
quantum mechanics, to find the classical

critical points of the action and
small oscillations, 1s not straig]

| quantize the
htforward.

e Imagine that we have written t

he action

strictly in terms of real fields, which 1s

always possible.

e There are, 1n general, no solutions to the

equations of motion.
9



e (Classical solutions are the critical points of
the action.

e The corresponding equations of motion have
no solution for real fields in general

e Solutions may exist, but they are off the real
axis 1n complexified field space.

555 .8Stop
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Even number of sites

e This case admits the Néel states as
reasonable approximations to the vacuum.

e However, they can tunnel into each other.

e The classical equation of motion 1s:

d(1l — 0,
18 ( e ) — sin 192'_1 Sin (97, Sin(qbi_l = ¢z)

dT

— sin (9@ sin (92'_|_1 Sin(¢i = ¢z’—|—1)
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e This equation admits a first integral:

d(1l — 0,
isz ( dS_OS ):O:>Zcosé’i:l:0

e We take the solution:

Oor, = m— 0 (92k_1 = 0
e Which giV?Vs:

N/2
L%ff = 1S Z @ — 1scosb Z((b%_l — Pk )
k=1 k=1

N

+ Z [K + A1 + cos(¢; — ¢i_|_1)]] sin® 6

1=1

12



e Making the further ansatz: ¢; — ¢;11 = (=1)"*1¢
e This gives the Lagrangian:
L%ff — isSN® — %gﬁcosﬁ + Uesy
e where
Uerr = N[K + A1 + cos )] sin”
e Thus the N spin Hamiltonian reduces down
to a single effective spin degree of freedom.
e Conservation of energy gives:  9,.U,;s = 0
e which implies:
COS O = — (

K
= | |
A+)<<
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e The solution i1s O =T+ igg

: K
e with cosh ¢ = (X + 1)

e And the # equation is:
150 = —2Asinfsin ¢ = 12\ sin 6 sinh ¢y
e with solutioné (r) = 2arctan (e“=™)) | o = (2)/s)sinh s
e This solution 1s 1rrelevant, its action 1s zero.
e The action comes from the complex ¢ = 7 + i¢;
isN (7101 isN [

Se = So— — [ dpcosBlp—g — —— [dpcosB|g—r
2 O 2 7r—|—’igb1

= 0—12sNm+ Ns¢p; = —1sNw + Nsoj
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K
e Thus we need: @1 = arccosh <T + 1)

21 o
~2In | —
A

: : 2K
e This grves S. = —isN7m+ Ns In (T)

e The energy splitting 1s then given by:

N s
A =29e % =29 (%) cos(sIN )

e This 1s negative for N=2(2k+1) and half odd
integer spin, but otherwise positive.
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e This gives the ground state 1s symmetric
superposition of the two Neel states | +) for
all values except N=2(2k+1) and half odd
integer spins, for which 1t 1s the anti-
symmetric superposition | -).

e The dependence on the coupling constant A*'*

indicates that the result can be obtained 1n
high orders in perturbation theory.

e In the thermodynamic limit, the two Néel
states become degenerate showing parity 1s
spontaneously broken.
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Odd number of sites
e The previous description 1s markedly

different when one considers an odd number
of sites.

e Here the Neéel state 1s frustrated, there 1s
necessarily a defect.

e As the position of the defect 1s arbitrary, the
ground state 1s NV fold degenerate.

|k> :|T7¢7T7¢7T7”'7 7"'7T7¢>

Ta Ta
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e Tunnelling allows the state | k) to mix with
other such states.

e We tried to find the instanton that does this,
but were unsuccessful. In fact flipping the
spins at positions k+1 and £+2 yields the
state | k+2), but this should occur at order \*°

e But the interaction at this order contains two
terms which can flip the spins:

— g+ \2 + Q—\2
(Skt15%42)"" (Sk—15% )°°
e (Generating the transitions:

k) —| kE+2) | k) —| k—2)
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e Thus at this order the degenerate ground
states are mixed. To find the linear
combination which yields the true ground
state we must diagonalize the corresponding
matrix of transition amplitudes. It is of the
form:

(00 1 0 - 1 0

00 0 1 -

1 0 0 0 1 0
[bm,/]:C 1 0

1 0 0 0

\0 1 1--- 0 0 0)
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e Where the coefticient 1s calculable as:

\ 2s
= +4Ks* | —
c == ()

e The minus sign 1s for integer spin while the
plus sign 1s for half odd integer spin.

e The matrix 1s of the circulant type, they can
be easily diagonalized using the roots of

1 V27Tj . 9 N_1
unity F) = (Lwj,ws, - wi' )
g; =b11+b1ow; + bljgwjz- 4o bl,NW;-V_l

.27

o where w; = e~ is the 5™, N*® root of
unity.
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e As there are only two non-zero components
in the first (any) row, we get:

€j — C(W? = w;V_Q)

479
= 2 :
CCOS( N)

C <0

Li/\ WWWWW /\

C(w + w; %)

) \J \




e The spectrum 1s symmetric about N/2:

COS(4qu%ﬂ—%ﬂ) ::Oms(4qu/£+k+l))

k=0,1,2,---,[N/2]—1

e Except, the state at ~=[/N/2] 1s not paired.

e For integer spins C < 0 this state 1s the
unique ground state.

e For half-odd integer spins C > 0 and the
ground state 1s doubly degenerate, in
accordance with Kramer’s theorem.
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Conclusions

e Even spin periodic chain has a non-degenerate ground state
which 1s the symmetric or the anti-symmetric superposition
of the two Ne¢el states depending on the spin and the
number of sites. The two superpositions are split in energy
by (%) "The excitation spectrum has a gap, proportional to 4\
and corresponding to the creation of a soliton anti-soliton
pair. The spin waves are highly gapped due to the large
anisotropy.

e (dd spin periodic chain has a gapless spectrum. The chain
must contain at least one soliton. The chain with one up-
up soliton has total spin s, while the one with a down down
soliton has total spin -s, and these two sectors do not mix.
As the position of the solitons is arbitrary, each sector i1s N
fold degenerate. Transitions between the ground states
breaks the degeneracy and form a gapless band, destroying
the possibility of long range order.
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