

Using the T2K near detector in neutrino oscillation measurements

Jordan Myslik

University of Victoria

June 16, 2014

The T2K Experiment

The PMNS matrix and some Quantum Mechanics tells us:

•
$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \sin^{2} \frac{\Delta m_{52}^{2} L}{4E_{\nu}}$$

•
$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - 4\cos^2\theta_{13}\sin^2\theta_{23}[1 - \cos^2\theta_{13}\sin^2\theta_{23}]\sin^2\frac{\Delta m_{32}^2L}{4E_{\nu}}$$

Neutrino oscillation: signal

- Oscillation probabilities are dependent on the neutrino energy (both include the term $\sin^2 \frac{\Delta m_{32}^2 L}{4E_{\nu}}$).
- CCQE is the dominant interaction process for T2K's neutrino energy spectrum.

 The neutrino energy is reconstructed from the outgoing lepton's momentum and angle.

Electron neutrino appearance Number of v_e candidate events Data Best fit Background component Fit region < 1250 MeV 500 1000 1500 >2000 Reconstructed neutrino energy (MeV) Muon neutrino disappearance Events/0.10 GeV 70E 60Ē DATA Best-fit Expectation with Oscillations MC Expectation without Oscillations 30E 20Ē 10E Reconstructed v Energy (GeV) June 16, 2014 3 / 12

Neutrino oscillation: backgrounds

- CC1π would appear to be CCQE if the pion is absorbed before leaving the nucleus, or is otherwise not detected.
- For NC1π⁰ the π⁰ decay photons would produce charged leptons which could be mistakenly identified as originating from a CCQE interaction.
- In both cases, the energy spectrum would be distorted.

How can ND280 contribute?

- The observed neutrino energy spectrum at SK is a function of the oscillation parameters, the interaction cross sections, and the neutrino flux provided by the beam.
- The measurements at ND280 constrain the beam flux at SK.
- Our cross section model has parameters that are common to ND280 and SK.
- ND280 has detector systematics of its own to consider.

Beam parameters

- This provides the flux at ND280 and SK, and the correlations between ND280 and SK flux bins of energy.
- Fit to ND280 data includes normalization parameters for the ND280 flux bins. The correlations are then used to constrain SK flux bins.

- Primary proton interactions with the target are modelled with FLUKA2008, with constraints from external data (such as NA61/SHINE).
- GEANT3 with GCALOR simulates propagation of secondary/tertiary pions/kaons and their decays.

Cross section parameters

- NEUT is used to simulate neutrino interactions.
- The model also includes nuclear model parameters (detector specific and not shown.) These are not propagated to the SK oscillation analysis.
- Sufficient information from the simulation is saved to allow an event weight to be calculated if a parameter is varied.

Parameter	Prior to ND280 Constraint	After ND280 Constraint
M _A ^{QE} (GeV)	1.21 ± 0.45	1.240 ± 0.072
M_A^{RES} (GeV)	1.41 ± 0.22	0.965 ± 0.068
CCQE Norm. E _v <1.5 GeV	1.00 ± 0.11	0.966 ± 0.076
CCQE Norm. 1.5 <e_v<3.5 gev<="" td=""><td>1.00 ± 0.30</td><td>0.93 ± 0.10</td></e_v<3.5>	1.00 ± 0.30	0.93 ± 0.10
CCQE Norm. E _v >3.5 GeV	1.00 ± 0.30	0.85 ± 0.11
CC1 π Norm. E _v <2.5 GeV	1.15 ± 0.32	1.26 ± 0.16
CC1π Norm. E _v >2.5 GeV	1.00 ± 0.40	1.12 ± 0.17
NC1π ⁰ Norm.	0.96 ± 0.33	1.14 ± 0.25

- *M_A^{QE}* is the mass parameter in the axial dipole form factor for quasielastic interactions. (Affects shape of CCQE cross section.)
- M_A^{RES} is the mass parameter in the axial dipole for factor for resonant pion production interactions (Affects the shape of CC1 π and NC π^0 cross sections.)

ND280 Systematics

- TPC2 FGD1 Nearly all are calculated TPC-FGD using control samples (i.e. matching efficiency not the neutrino spill data -Out-Ofitself.) These include: Fiducial-Volume -Cosmic muons Sand muons. -Charge confusion -Sand muons Cosmic muons. -Momentum resolution -Momentum scale Stopping TPC1-FGD1 π^+ -B field distortions protons and muons. Pion reinteractions Beam -Tracking efficiency -Tracking efficiency -Michel electron -Hit efficiency -Particle ID (PID) efficiency -Particle ID (PID)
- Methods of propagation in the fit:
 - Event weight (Black): Weight based on MC comparison to control samples or external information.
 - Event migration (Blue): Reconstructed quantities are changed and the selection re-performed using the new quantities.

Jordan Myslik (University of Victoria) Using the T2K near detector in neutrino oscillation measurements

ND280 Systematic: Pion reinteractions

- Occur outside nucleus pion produced in.
- Geant4 model differs from external data.
- Data uncertainties large, limited momentum range (extrapolate outside it).
- Two sets of weights:
 - Correct MC to Data.
 - Variation according to Data uncertainty.
- Given pion interaction process cross sections, calculate probability of the relevant pion trajectories in the event. Changing cross section changes probability. Event weight is ratio of probabilities.

- Absorption of π^+ on Carbon-12.
- Geant4 cross section is in blue.
- Data is in black. The extrapolated points begin after the points get much denser, below and above the data region.

Fitting ND280 samples

- For the 2013 analysis ND280 provided 3 ν_{μ} samples defined by the particles leaving the nucleus.
 - CC-0π: A muon and no pions. Dominated by CCQE.
 - CC-1π⁺: A muon and a positive pion. Dominated by CC1π.
 - CC-Other: A muon and any other combination of pions.
- These plots show the nominal Monte Carlo distribution and that re-weighted with the fit results, in comparison to the data for the CC- 0π sample.

CC-0 π sample

Muon cos 6

Impact on the oscillation analysis

Electron neutrino appearance

Error source [%]	$\sin^2 2\theta_{13} = 0.1$	$\sin^2 2\theta_{13} = 0$
Beam flux and near detector	2.9	4.8
(w/o ND280 constraint)	(25.9)	(21.7)
ν interaction (external data)	7.5	6.8
Far detector and FSI+SI+PN	3.5	7.3
Total	8.8	11.1

- For muon neutrino disappearance, this corresponds to a 21.6%uncertainty due to beam flux and near detector constrainable cross section parameters without the ND280 constraint, and 2.7% with the constraint.

Muon neutrino disappearance

• Overall, a large reduction in uncertainty for both electron neutrino appearance and muon neutrino disappearance analyses!

Summary

- Measuring neutrino oscillation parameters at T2K requires a good understanding of the neutrino flux at the far detector and the relevant interaction cross sections.
- The T2K near detector (ND280) makes measurements that constrain flux and cross section model parameters at the far detector.
- The ND280 constraint reduces uncertainties in the oscillation parameter measurements to a great extent, allowing more precise measurements than would otherwise be possible.