

Identifying CC1π⁺ at Super-Kamiokande

Sophie Berkman University of British Columbia

> CAP Congress June 16, 2014

T2K CCQE Signal

- T2K Signal: charged current quasi-elastic $\nu_{\mu} + n \rightarrow \mu^{-} + p$
 - Dominant interaction at T2K energies
 - Look for single muon events at SK
 - Proton is typically below
 Cherenkov threshold
 - Reconstruct neutrino E_{ν} =
 - Only depends on muon kinematics (p_µ, θ_{µν})

$$=\frac{m_p^2 - (m_n - E_b)^2 - m_\mu^2 + 2(m_n - E_b)E_\mu}{2(m_n - E_b - E_\mu + p_\mu\cos\theta_{\mu\nu})}$$

 Largest contribution to background are interactions that produce charged pions

Pion Backgrounds at SK

• Signal:

 $\nu_{\mu} + n \rightarrow \mu^{-} + p$

• Neutral Current $1\pi^+$:

$$\nu_{\mu} + p \to \nu_{\mu} + \pi^+ + n$$

- Misidentify pion as muon
- Charged Current $1\pi^+$: $\nu_{\mu} + p/n \rightarrow \mu^- + \pi^+ + p/n$
 - Miss pion and reconstruct as signal
 - Misreconstruct neutrino energy

Neutrino Energy (GeV)

- Current T2K analyses only separate electrons from muons
- Pion and muon rings look similar at SK, except for hadronic interactions

$CC1\pi^+$ as SK signal

- Charged current single pion $\nu_{\mu} + p/n \rightarrow \mu^{-} + \pi^{+} + p/n$
 - Second most dominant interaction at T2K energies
 - Look for events with $\mu^{\scriptscriptstyle -}$ and $\pi^{\scriptscriptstyle +}$
 - Proton or neutron too low energy to reconstruct
 - Reconstruct neutrino energy
 - Analogous to CCQE reconstruction²
 - Only depends on muon and pion kinematics
 - Constrain background in single muon sample
 - Additional oscillation signal

$$E_{\nu} = \frac{m_l^2 + m_{\pi^+}^2 - 2m_N(E_l + E_{\pi^+}) + 2p_l \cdot p_{\pi^+}}{2(E_l + E_{\pi^+} - |\mathbf{p}_l| \cos \theta_{\nu l} - |\mathbf{p}_{\pi^+}| \cos \theta_{\nu \pi^+} - m_N)}$$

Neutrino Energy (GeV)

Reconstructing π^+ and CC1 π^+

• Reconstruct kinematics of particles in SK

$$\mathcal{L}(\boldsymbol{x}) = \prod_{i=1}^{N_{\text{unhit}}} \mathcal{P}_i(\text{unhit};\boldsymbol{x}) \prod_{j=1}^{N_{\text{hit}}} \mathcal{P}_j(\text{hit};\boldsymbol{x}) f_q(q_j;\boldsymbol{x}) f_t(t_j;\boldsymbol{x})$$

- Charged pions:
 - Kinked track signature: pion changes direction after hadronic interaction
 - Can scatter below Cherenkov threshold so abruptly stops producing light
- Upstream pion reconstruction:
 - Assume below threshold after hadronic interaction
- Multi-ring framework, allows construction of CC1π⁺ hypothesis
 - μ^- and π^+ from same vertex

MC Selection of CCQE and CC1 π^+

- Ability to reconstruct CC1π⁺ makes it possible to add an additional sample to oscillation signal
- Monte Carlo selection
 - CC1π⁺-like: 1 π⁺ and one μ⁻ after final state interactions and before secondary interactions
 - **CCQE-like:** one μ^{-} after final state interactions
- ~40% additional events

With Current T2K Statistics, 6.57 x 10²⁰ POT

Interaction Mode	Number of Events without oscillation	Number of Events with oscillation
CCQE	375.1	86.62
$CC1\pi^+$	83.64	35.84

Pion Systematic Errors

- Existing secondary interaction systematic error
- CC1π⁺ will be a new SK sample
 - Evaluation of systematic errors required for use in analysis
- Studies are especially important for pions close to Cherenkov threshold (160MeV/c)
 - PICCOLO Detector
 - DUET Experiment See Elder Pinzon's talk tomorrow

Source of uncertainty (number of parameters)	$\delta n_{ m SK}^{ m exp}$ / $n_{ m SK}^{ m exp}$
ND280-independent cross section (11)	4.9%
Flux and ND280-common cross section (23)	2.7%
SK detector and FSI+SI systematics (7)	5.6%
$\sin^2(\theta_{13}), \sin^2(\theta_{12}), \Delta m_{21}^2, \delta_{CP} (4)$	0.2%
Total (45)	8.1%

PICCOLO Detector

- Understand amount and properties of Cherenkov light produced by pions close to Cherenkov threshold.
 - May be different than for muons/electrons due to hadronic interactions
- Cylinder filled with water with 4 PMTs to collect total light

PICCOLO Data Collection & Analysis

- Data collection in TRIUMF M11 secondary beam-line contains: e⁺, μ⁺, π⁺.
 - ~2% momentum resolution
 - Scan pion Cherenkov threshold from 130-300 MeV/c
 - Separate particle types with time of flight
- To study primary pions, remove light from decay electrons produced

PICCOLO Analysis

- Mean amount of light produced over the momentum range (130-300 MeV/c)
- Evidence of the Cherenkov threshold

Conclusions

- A CC1π⁺ sample at SK can provide a new signal sample for T2K oscillation analyses.
- A framework exists for identifying CC1 π^+ events.
- Use of the CC1π⁺ sample will require better understanding of pion light production in water which can be done using the PICCOLO beam test data.

Backup Slides

Appearance Formula

• Full formula for electron neutrino appearance

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &= 4C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \sin^{2}\Delta_{31} \text{ Leading term} \\ &+ 8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21} \\ \text{CP violating term} &- 8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta \cdot \sin\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21} \\ &+ 4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta) \cdot \sin^{2}\Delta_{21} \\ &- 8C_{13}^{2}S_{12}^{2}S_{23}^{2} \cdot \frac{aL}{4E_{\nu}}(1 - 2S_{13}^{2}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \\ &+ 8C_{13}^{2}S_{13}^{2}S_{23}^{2} \frac{a}{\Delta m_{13}^{2}}(1 - 2S_{13}^{2}) \sin^{2}\Delta_{31} \end{split}$$

T2K v_{μ} Energy Spectrum

Super-Kamiokande & Cherenkov Radiation

- Super Kamiokande
 - 50 kTon cylindrical water Cherenkov detector
- Cherenkov light is produced when charged particles have speed of

$$v > \frac{c}{n}$$

• Minimum momentum to produce Cherenkov light:

$$p_{min} = \frac{mc}{\sqrt{n^2 - 1}}$$

- Called "Cherenkov threshold"
- Light is produced in a cone around trajectory of particle
- See rings of light projected on the walls

Event Reconstruction

- Need to reconstruct kinematics of outgoing particles from neutrino interactions to calculate the neutrino energy
- Event: times and charges registered by PMTs
 - Charges are clustered into groups of similar times
 - Clusters arranged into "subevents" with one time, one charge per PMT
- Event Reconstruction for SK (fiTQun):

$$\mathcal{L}(\boldsymbol{x}) = \prod_{i=1}^{N_{\text{unhit}}} \mathcal{P}_i(\text{unhit};\boldsymbol{x}) \prod_{j=1}^{N_{\text{hit}}} \mathcal{P}_j(\text{hit};\boldsymbol{x}) f_q(q_j;\boldsymbol{x}) f_t(t_j;\boldsymbol{x})$$

Track parameters x: position, time, direction, momentum

Event Reconstruction

• Charge PDF:

- Determining what happened in an event:
 - Number of rings
 - Kinematics of each ring
 - PID of ring
- Unify these questions by comparing likelihood ratios

Toy Study Contours

- CCQE is comparable to T2K result for current data set
 - Note different scales
- No systematic errors included

Mode

CCQE

 $CC1\pi^+$

CCQE+

 $CC1\pi^+$

PICCOLO Data Collection

- TRIUMF M11 beam
 - Secondary beamline
 - Contains: e^+ , μ^+ , π^+
- Select momenta in a range from 130 – 300 MeV/c
- Collected PMT waveform on an oscilloscope

Particle Identification

- Beam contains e^+ , μ^+ , π^+ so need to separate particles for analysis
- Particles travel at different speeds because of different masses
- Distinguish particles using different flight times from production to detector

Muon Lifetime

- Muons decay as: $\mu^+ \rightarrow e^+ + \bar{\nu}_e + \nu_\mu$
- Particle Data Group μ^+ lifetime: ~2.197 μ s
 - Ran beam with positive particles so expect lifetime measurement without any muon capture effect
- Extract lifetime as a check of the data
- Identify muons and look for a decay electron peak

