

Neutrino cross sections at the T2K near detectors

Mark Scott CAP Congress 2014 16/06/14

• Neutrinos – left handed, neutral leptons – interact through the weak nuclear force

- Neutral current rely on hadronic side of interaction to provide information
- Charged current:
 - Identifying lepton flavour tells us the neutrino flavour
 - Lepton kinematics can give information on neutrino energy

• Neutrinos – left handed, neutral leptons – interact through the weak nuclear force

- Neutral current rely on hadronic side of interaction to provide information
- Charged current:
 - Identifying lepton flavour tells us the neutrino flavour
 - Lepton kinematics can give information on neutrino energy

Three principal types of neutrino interaction

Charged Current Quasi Elastic Scattering (CCQE)

- Principal signal for most neutrino experiments
- Single muon and a proton enter the detector

Three principal types of neutrino interaction

Charged Current Resonant production (CCRES)

- Neutrino excites proton, decays by emitting a pion
- Might see a muon, pion and the proton

Three principal types of neutrino interaction

Charged Current Deep Inelastic Scattering (CCDIS)

- Neutrino interacts with a quark
- Produces a shower of particles as the nucleus breaks apart

Neutrino interactions - CC

- Neutrino charged current (CC) cross section measurements
- Consistent results at high energies (> 10 GeV)
- Disagreement below 1 GeV

Neutrino interactions - CC

- Neutrino charged current (CC) cross section measurements
- Consistent results at high energies (> 10 GeV)
- Disagreement below 1 GeV

Neutrino interactions - CC

 Neutrino charged current (CC) cross section measurements

- Consistent results at high energies (> 10 GeV)
- Disagreement below 1 GeV
- In oscillation experiments:

 $N^{obs} = Flux * Cross section$

T2K Collaboration, Phys. Rev. Lett. 112, 181801, 2014

Source of uncertainty (number of parameters)	$\delta n_{ m SK}^{ m exp} / n_{ m SK}^{ m exp}$
ND280-independent cross section (11)	4.9%
Flux and ND280-common cross section (23)	2.7%
SK detector and FSI+SI systematics (7)	5.6%
$\sin^2(\theta_{13}), \sin^2(\theta_{12}), \Delta m_{21}^2, \delta_{CP}$ (4)	0.2%
Total (45)	8.1%

• Cross section uncertainties are the dominant systematic in muon neutrino disappearance

How does this affect oscillation physics?

• All next generation oscillation experiments have **total** systematic error

budget ~5%

• Hyper-K $\delta_{CP} \neq 0$ sensitivity

- We need more and better cross section measurements:
 - Multiple target nuclei
 - Differential measurements
 - Model independent
 - Electron neutrino cross sections
 - Publish neutrino flux predictions

M. Yokoyama, 1st Open Hyper-K Meeting

Cross section measurements at the T2K near detectors

- Fine grained scintillator and water targets
- Magnetic field charge and momentum measurements
- 2.5° off neutrino beam axis same as SK

Interactive Neutrino GRID (INGRID)

- 7 x 7 cross
- Iron and plastic scintillator sheets
- On-axis
- Proton module scintillator only

v CC inclusive cross section

• Charged current inclusive v_{μ} cross section published -

Phys. Rev. D 87, 092003 (2013)

- Select neutrino interactions in the fine grained targets (FGDs) of the ND280
 - Look for negative, muon-like tracks starting in the target
- Carbon target
- Differential measurement:
 - Muon angle
 - Muon momentum
- Minimal model dependence

ND280 event display showing interaction identified as $\nu_{\mu}CC$ DIS

v CC inclusive cross section

- Data tables published along with T2K flux
 - allows theorists to directly compare their models to experimental data

(http://t2k-experiment.org/results/nd280data-numu-cc-inc-xs-on-c-2013/) (http://t2k-experiment.org/results/neutrino-beam-flux-2013/)

16/06/14

v CC inclusive cross section

Entries 6000

5000

4000 -

→ Data

v_e CCQE

v_e CCnonQE

y background μ background

- Single differential charged current inclusive electron neutrino cross section B. Smith, 9th International Workshop on Neutrino-Nucleus Interactions in the Few GeV Region, (NuInt 2014)
- Select highest momentum negative track in FGD

Require it is identified as an electronlike track

- Reduce background events from $\gamma \rightarrow e^+e^$ conversions:
 - Veto upstream activity

No positron tracks

v CC inclusive cross section

- Results show good agreement with the NEUT and GENIE neutrino interaction generators
- Single differential measurements as a function of electron momentum and electron angle to the neutrino beam
- Paper being prepared for publication

v CC inclusive cross section

on Fe and CH

- Iron makes up 96% of standard INGRID modules
- CH makes up 99% of the Proton Module
- Measure CC inclusive cross section in both modules T. Kikawa, NuInt 2014
 - First measurement on Fe below 3 GeV
 - Compare same cross section on different target nuclei
- Paper being prepared for publication

v CC inclusive energy

dependent cross section

- Group modules according to off axis position
- Module groups see different neutrino fluxes

- Fit CC inclusive cross section in each module
- Model independent measurement of CC inclusive cross section as a function neutrino energy
- Result coming soon

Future ND280 results

Many more analyses underway or in the process of publication

Summary

- Neutrino cross sections around 1GeV are complicated:
 - Tension between results leads to large systematic uncertainties
 - We need to understand neutrino cross sections to achieve future long baseline neutrino experiment targets
- To make progress we need more data:
 - Model independent, differential measurements
 - Flux integrated result with the flux prediction made available
- T2K near detectors are providing these measurements:
 - New results nearing publication
 - Many people working on next set of analyses
 - Working to provide the most useful measurements in the most useful way to the community

Backup slide

- Early measurements of M_A^{QE}:
 - Give average value of M_A^{QE} as 1.026 ± 0.021^1
- K2K, MiniBooNE, SciBooNE, NOMAD, MINOS
 - Nuclear targets
 - High statistics

Argonne (1969)
Argonne (1973)
CERN (1977)
Argonne (1977)
CERN (1979)
BNL (1980)
BNL (1981)
Argonne (1982)
Fermilab (1983)
BNL (1986)
BNL (1987)
BNL (1990)
Average

• MiniBooNE fit gives $M_A^{QE} = 1.35$

1. Bernard et al., JPhysG28, 2002

Spectral functions

- Describes the momentum distribution of nucleons within the nucleus
- By default NEUT uses a relativistic Fermi gas (RFG) model, want to transition to using the O. Benhar's spectral function model

- The spectral function model composed of a mean-field region, includes a correlated term giving a high momentum tail
- Performs better than RFG in electron scattering experiments
- Correlated term leads to two nucleon ejection

Meson exchange currents

- Many names
 - np-nh, MEC, multi-nucleon ejection
- All refer to (roughly) the same thing
 - Neutrino interacts with more than one nucleon
- An additional processes alongside CCQE
- Evidence for models in electron scattering data
- Can reproduce observed MiniBooNE QE data
- Multiple nucleons can exit the nucleus

Meson exchange currents – cont.

- CCQE events are the primary signal channel in oscillation analyses, and spectral information is important
- MiniBooNE and SK cannot reconstruct ejected nucleons MEC events ≡ CCQE events in these detectors
- Reconstructing neutrino energy assuming CCQE kinematics leads to biases
- Reconstructed neutrino energy in pink for 800 MeV neutrinos
- Oscillated SK spectrum in blue (true neutrino energy)
- MEC events biased to lower reconstructed energy – fills oscillation dip

Disentangling CCQE

- Lots of different models can explain both electron scattering and neutrino data
- Need more data to distinguish them
- Muon neutrino CCQE cross section on carbon
- MEC model (2p-2h, green)
- np-nh model (blue)
- MiniBooNE data
- Experiments need to provide data for theorists to work with:
 - Model independent
 - Differential measurement
 - Lepton kinematics
 - Publish neutrino flux

Cross sections and oscillations

• In current oscillation analyses we have large errors coming from the neutrino cross section parameters

0		$\sin^2 2\theta_{13} = 0.1$	
From ND280	Error source	$\rm w/o~ND280~fit$	$\rm w/~ND280~fit$
$\frac{1}{2}$	Beam only	11.6	7.5
٦	$M_A^{QE} \ M_A^{RES}$	21.5	3.2
2	$M_A^{ar{R}ES}$	3.3	0.9
ш.	CCQE norm. $(E_{\nu} < 1.5 \text{ GeV})$	9.3	6.3
1	$\text{CC1}\pi$ norm. $(E_{\nu} < 2.5 \text{ GeV})$	4.2	2.0
	$NC1\pi^0$ norm.	0.6	0.4
	CC other shape	0.1	0.1
\downarrow	Spectral Function	6.0	6.0
SK only	p_F	0.1	0.1
	CC coh. norm.	0.3	0.2
	NC coh. norm.	0.3	0.2
0,	NC other norm.	0.5	0.5
	$\sigma_{ u_e}/\sigma_{ u_\mu}$	2.9	2.9
	W shape	0.2	0.2
	pion-less Δ decay	3.7	3.5
	SK detector eff.	2.4	2.4
	FSI	2.3	2.3
	PN	0.8	0.8
	SK momentum scale	0.6	0.6
	Total	28.1	8.8

units: percentage error on N_{SK}

$CC1\pi$ measurement

- There are discrepancies in the existing $CC1\pi$ data:
 - Bubble chamber data disagreement
 - MiniBooNE data prefers no FSI?
- Currently use these datasets to constrain pion cross section uncertainties in oscillation analyses
 - Disagreements lead to larger errors
 - Is it correct to do this? Different targets, fluxes etc.
 - Leads to O(2%) uncertainties in near-far extrapolation
- Now working on pion cross section analyses

Olga Lalakulich, NuInt 2012