Terahertz-frequency test for Fermi liquid conductivity in MnSi

J. Steven Dodge

Simon Fraser University Burnaby, British Columbia

CAP Congress, Sudbury, 2014

Acknowledgements

Laleh Mohtashemi (SFU)

Eric Karhu (Dalhousie)

Amir Farahani (SFU)

Ted Monchesky (Dalhousie)

Correlated metals are often Fermi liquids at low ω , T

Sr₂RuO₄

Bergemann et al., 2000

Bergemann et al., 2003

Damascelli et al., 2000

But trouble can begin at only a few meV

CdPd₃

Kamal et al., 2006; Lee et al., 2002

Webb et al., 1986

What sets the Fermi liquid scale?

Anomalous power law conductivity in ruthenates and cuprates

Y-doped BSCCO

van der Marel et al., Nature 2003

$$\sigma(\omega, T) = \frac{A}{(1/\tau(T) - i\omega)^{\alpha}}, \quad \alpha < 1$$

Basic properties of MnSi

A Fermi liquid with a low characteristic energy scale

- Quantum oscillations
- ▶ $\rho(T) = \rho_0 + AT^2$ ✓
- ho $\sigma_1(\omega) \propto \omega^{-\alpha}, \alpha \sim 0.5$ (IR) χ
- ▶ QPT at *p* = 14.6 kbar
- ▶ B20 structure, lacks inversion
- ▶ Helimagnet, $T_C \sim 30 \text{ K}$
- Skyrmion excitations

Pfleiderer et al., Nature 2004

Anomalous power law at low temperatures, pseudogap at high temperatures

$$\sigma(\omega,T) = \frac{A}{(1/\tau(T) - i\omega)^{\alpha}},$$

 $\alpha \approx 0.54$

Anomalous power law at low temperatures, pseudogap at high temperatures

$$\sigma(\omega,T) = \frac{A}{(1/\tau(T) - i\omega)^{\alpha}},$$

 $\alpha \approx 0.54$

Anomalous power law at low temperatures, pseudogap at high temperatures

$$\sigma(\omega,T) = \frac{A}{(1/\tau(T) - i\omega)^{\alpha}},$$

$$\alpha \approx 0.54$$

Anomalous power law at low temperatures, pseudogap at high temperatures

$$\sigma(\omega,T) = \frac{A}{(1/\tau(T)-i\omega)^{\alpha}},$$

$$\alpha \approx 0.54$$

Terahertz conductivity measurements with thin films

$$t_{sr}(\omega) \equiv rac{E_s(\omega)}{E_r(\omega)}$$

$$= rac{n+1}{n+1+\sigma(\omega)dZ_0}e^{i\Delta_{sr}(\omega)}$$

If substrate mismatch
$$\Delta_{sr}(\omega) \approx 0$$
,

$$\sigma(\omega) = \frac{n+1}{d Z_0} \left[\frac{1}{t_{sr}(\omega)} - 1 \right]$$

Samples: MnSi(111)/Si, $d \simeq$ 25 nm

Temporal shift relates to Drude scattering time

Temporal delay uncertainty of $\eta \approx \pm 2$ fs dominates conductivity parameter uncertainty

$$\sigma \approx \sigma_0/(1-i\omega\tau) \approx \sigma_0 e^{i\omega\tau}; \quad t \approx 1/\sigma \approx e^{-i\omega\tau}/\sigma_0$$

Complex conductivity of MnSi

Approaches Drude form at T = 6.5 K

Anomalous power law becomes less anomalous

Approaches Drude form at T = 6.5 K

Drude extrapolations of $\rho_0(T)$

With comparison to four-probe measurements

Low-frequency Drude fit yields $\tau^*(T)$

At T= 6.5 K $au^*\gtrsim$ 500 fs, but it drops rapidly with T to become *negative* for $T\gtrsim$ 50 K

Low-frequency Drude fit yields $\tau^*(T)$

At T= 6.5 K $au^*\gtrsim$ 500 fs, but it drops rapidly with T to become *negative* for $T\gtrsim$ 50 K

How do we interpret a negative value of τ^* ?

A strong pseudogap in $\sigma_1(\omega)$ is associated with a negative *slope* of $\sigma_2(\omega)$

$$\sigma(\omega) = \frac{\epsilon_0 \omega_p^{*2}}{1/\tau^* - i\omega} \approx \epsilon_0 \omega_p^{*2} (1 + i\omega\tau^*)$$

$$\Rightarrow \tau^* \equiv \frac{1}{\sigma_0} \frac{d\sigma_2(\omega)}{d\omega} \Big|_{\omega \to 0}$$

Kramers-Kronig yields:

$$au^* \equiv rac{2}{\pi} \int_0^\infty rac{\sigma_0 - \sigma_1(\omega)}{\sigma_0 \omega^2} d\omega$$

How do we interpret a negative value of τ^* ?

A strong pseudogap in $\sigma_1(\omega)$ is associated with a negative *slope* of $\sigma_2(\omega)$

$$\sigma(\omega) = \frac{\epsilon_0 \omega_p^{*2}}{1/\tau^* - i\omega} \approx \epsilon_0 \omega_p^{*2} (1 + i\omega\tau^*)$$

$$\Rightarrow \tau^* \equiv \frac{1}{\sigma_0} \frac{d\sigma_2(\omega)}{d\omega} \Big|_{\omega \to 0}$$

Kramers-Kronig yields:

$$au^* \equiv rac{2}{\pi} \int_0^\infty rac{\sigma_0 - \sigma_1(\omega)}{\sigma_0 \omega^2} d\omega$$

How do we interpret a negative value of τ^* ?

A strong pseudogap in $\sigma_1(\omega)$ is associated with a negative *slope* of $\sigma_2(\omega)$

$$\sigma(\omega) = \frac{\epsilon_0 \omega_p^{*2}}{1/\tau^* - i\omega} \approx \epsilon_0 \omega_p^{*2} (1 + i\omega\tau^*)$$

$$\Rightarrow \tau^* \equiv \frac{1}{\sigma_0} \frac{d\sigma_2(\omega)}{d\omega} \Big|_{\omega \to 0}$$

Kramers-Kronig yields:

$$au^* \equiv rac{2}{\pi} \int_0^\infty rac{\sigma_0 - \sigma_1(\omega)}{\sigma_0 \omega^2} d\omega$$

Measurement of $\omega_p^{*-2} = \epsilon_0 \rho_0 \tau^*$

Saturation at $T\sim$ 20 K at $\omega_p^*\sim$ 1 eV, mass enhancement of 4-6

Fermi liquid theory predicts ω/T scaling

Experiments agree qualitatively, but not quantitatively

For $\hbar\omega\approx 2\pi k_B T$, $\omega\tau\gg 1$,

$$\sigma(\omega) pprox rac{\epsilon_0 \omega_p^{*2}}{1/ au_{
m qp} - i\omega}, ext{ with} \ rac{\hbar}{ au_{
m qp}} = rac{2}{3\pi k_B T_0} \left[(\hbar\omega)^2 + (2\pi k_B T)^2
ight].$$

Experiments observe:

$$rac{\hbar}{ au_{\sf qp}} = rac{2}{3\pi k_B T_0} \left[(\hbar\omega)^2 + b(\pi k_B T)^2
ight],$$

Berthod et al., PRB 2013.

See also Chubukov and Maslov, PRB 2012.

with $b \approx 1$, not b = 4.

Expect $1/(\omega^2 \tau_{qp}) \approx 9$ fs in MnSi (!).

Experimental observations in other materials

Characteristic temperature scale T_0 sets the relevant scale

Material	<i>T</i> ₀ (K)	b
•UPt ₃	17	< 1
 Ce_{.95}Ca_{.05}TiO_{3.04} 	1156	1.72
 Nd_{.95}TiO₄ 	1037	1.1
URu₂Si₂	103	1
∙Hg1201	719	2.3
•MnSi	180	1–4

UPt₃: Sulewski *et al.*, *PRB* 1988; (Ce,Ca)TiO₃: Katsufuji and Tokura, *PRB* 1999; NdTiO₄: Yang *et al.*, *PRB* 2006; URu₂Si₂: Nagel *et al.*, *PNA*S 2012; Hg1201: Mirzaei *et al.*, *PNA*S 2013.

Frequency-dependent $1/\tau$ for $2\pi k_B T \approx h\nu$:

 $2\pi k_B(6.5 \text{ K}) \approx h(0.85 \text{ THz})$

Measurement of Fermi liquid scaling parameter 1/b

Quantitative agreement with theory remains elusive

$$ho(\omega, T) \equiv 1/\sigma(\omega, T) \propto \left[(\hbar \omega)^2 + b(\pi k_B T)^2 \right], \quad b = 4$$

Summary

- ▶ MnSi exhibits $\sigma(\omega, T)$ consistent with Fermi liquid theory
- ▶ Drude fit gives $\omega_p^*(T)$ that saturates for $T \lesssim 20$ K
- Comparison with band theory yields a mass enhancement of 4-6
- ▶ For $T \gtrsim 50$ K, the slope of $\sigma_2(\omega)$ is negative
- ▶ Negative slope in $\sigma_2(\omega)$ indicates pseudogap in $\sigma_1(\omega)$
- ▶ Above $T \sim 10 \text{ K}$, $b \approx 1$, quantitatively inconsistent with FLT
- Possible evidence for a crossover to a larger value of b at low T