

ttH Signal Modelling and Systematics on ATLAS

Canadian Association of Physicists Congress 2014 - Sudbury, ON/Canada

Steffen Henkelmann | Alison Lister | Matthias Danninger | Mack van Rossem

June 16, 2014

Introduction

UBC

- Higgs boson discovered in bosonic decay modes
 - ATLAS: 126.0 ± 0.4 (stat.) ± 0.4 (syst.) GeV
 - CMS: 125.3 ± 0.4 (stat.) ± 0.5 (syst.) GeV

- ATLAS: Η → ττ (4.1 σ)
- **CMS**: combination of $H \rightarrow \tau\tau$ and $H \rightarrow bb$ (4.0 σ)
- ggH production and H $\rightarrow \gamma \gamma$ decays yield **indirect** evidence for **top-Higgs Yukawa** coupling
 - Might depend on new physics distributions
- ttH production provides **direct** probe of top-Higgs Yukawa coupling $ightarrow \sigma_{
 m t\bar{t}H} \sim g_{
 m t\bar{t}H}^2$
 - Allows the probe of new physics in ggH, Hγγ, HγZ

Motivation

ttH (H \rightarrow bb):

- Represents search of a very small signal on top of a not so well known background
 - Usage of MVA techniques
 - ttH analysis relies on robust signal and background models

Signal modelling

- Analyze variety of MC generators on the market (state-of-the-art picture)
- Studies performed on truth level (parton&particle level)

Systematic modelling uncertainties

- Assess modelling uncertainties to the signal model
- Renormalisation/factorisation scale choice, PDF uncertainty, Parton Shower uncertainty, ...

Modern MC generators

- Full MC event representation
 - ttH event

Modern MC generators

Modern MC generators

MC model systematics

UBC

MC model

• Current ttH (H→bb) signal baseline is **PowHel+Pythia** & PDF: CT1onlo

MC model systematics

Parton shower systematic

Parton shower systematic

Reweighting procedure at truth level

Understand and reproduce the MC generator specific event record

- 1. Investigate kinematic distributions
- 2. If appreciable differences are observed
- 3. Reweight
 - take bin-by-bin ratio or functional form
- 4. Investigate impact on other kinematic distributions
- 5. Iterate 1-4 if necessary

- Minimize kinematic differences
- Apply reweighting functions as event-weight → systematic

UBC

- Investigate variety of kinematic distributions on truth level
- ttH-pT distribution showed most significant differences (good start)

- Take ratio of two contributions
- Apply different numbers as event weight
 - Closure

Ratio

- Before and after ttH-pT reweighting
 - Small impact on other kinematic distributions

ttH pT

JBC

leading particle jet pT

• Second reweighting → Higgs pT

• "sequential" reweighting of Higgs pT (after ttH-pT rew.)

• Reweighting impact

→ minimize differences in variety of kinematic distributions

$\Delta R(b,b)$

JBC

June 16, 2014

Conclusions

- UBC
- Search for ttH (H→bb) represents search of a very small signal on top of a not so well known background
- A lot of effort and complexity in order to increase the sensitivity to the signal:
 - Multiple multivariate discriminants
 - Relies on a robust signal and background model
 - Several control regions to control the background normalization and reduce the effect of systematic uncertainties
- Investigation & dedicated comparisons of different MC predictions for ttH process
 - varying QCD accuracy and physics features
- Several systematics assessed
 - Illustrated reweighting procedure

Backup

KESULIS KESULIS

June 16, 2014

ttH analysis results

- Data corresponding to 20.3 fb⁻¹ @8 TeV
- **Observed and expected** (median, for the background-only hypothesis) @95% C.L. **upper limits** on ttH cross section relative to the SM prediction with $m_{\rm H} = 125$ GeV

	Observed	Expected
Single lepton	4.2	3.10
Dilepton	6.95	4.27
Combination	4.14	2.57

Observed signal strength (@m_H = 125 GeV)

	signal strength	uncertainty
Single lepton	1.28	1.62
Dilepton	2.88	2.29
Combination	1.74	1.36

Combination

0

2

June 16, 2014

Steffen Henkelmann - University of British Columbia

10

12

μ= 1.7 ± 1.4 (stat. ± 0.7) _

8

best fit σ/σ_{SM} for m_H=125 GeV

6

ttH @ATLAS and @CMS

- Most sensitive ttH (H \rightarrow bb) result @LHC
 - ATLAS ttH (H \rightarrow bb) @7 TeV: I+jets (m_H = 125 GeV):

ATLAS: upper limit on σ/σ (ATLAS-CONF-2012-135)	Observed	Expected
Combination	13.1	10.5

• CMS ttH (H \rightarrow bb) @8 TeV: comb. of I+jets, dilepton and tau channel (m_H = 125 GeV):

CMS: upper limit on σ/ σ _{SM} (CMS-PAS-HIG-13-019)	Observed	Expected
Combination	5.2	4.1

• ATLAS ttH (H $\rightarrow \gamma \gamma$) @8 TeV: comb. of I+jets and allhadronic (m_H = 126.8 GeV):

ATLAS: upper limit on σ/σ (ATL-CONF-2013-080)	Observed	Expected
Combination	4.7	5.4

LHC & ATLAS

June 16, 2014

LHC beam injection

- p-p collisions
- Pre-acceleration in LINAC2 ~ 50 MeV
- BOOSTER ~1.4 GeV
- Proton Synchrotron (PS) ~ 25 GeV
- Super Proton Synchrotron ~450 GeV
- LHC:
 - → 20 minutes acceleration and beam optimization
- Design:
 - \rightarrow 2808 proton bunches
 - → ~ 1.15 x 1011 protons per bunch
 - \rightarrow 25 ns separation
 - \rightarrow 40 mio. Collisions per second
- Four experiments:

ATLAS, CMS, LHCb, ALICE

CMS

The ATLAS detector

- Forward-backward asymmetric
- Right-handed coordinate system
 - → axis: x to LHC center, y to surface, z is beam direction
- Cylindrical coordinates (r, ϕ)
 - \rightarrow transverse plane
- pseudorapidity $\eta = -\ln(\tan\theta/2)$

- **ID** $|\eta| < 2.5 : \rightarrow$ charge and momentum
- Solenoid: axial magnetic field (2 T)
- ECAL |η| < 3.2 : sampling (lead/argon)
 → energy and position
- HCAL |η| < 1.7 : sampling (iron/scint. Tile)
 → energy and position
- **MS** $|\eta| < 2.7:$ 3 air-core toroids with 8 coils, precision tracking chamber
 - \rightarrow charge and momentum

Particle detection

HIGGS & TOP PHENOMENOLOGY 6HENONENOFOCX

June 16, 2014

- Higgs coupling ~ particle mass
 - g_{ffH} ~ m_f/v
 - g_{VVH} ~ M²_V/v
 - v ~ 246 GeV
 - Higgs coupling more likely to heavy particles

- Higgs coupling ~ particle mass
 - y g_{ffH} ∼ m_f/v
 - g_{VVH} ~ M²_V/v
 - v ~ 246 GeV
 - Higgs coupling more likely to heavy particles

<u>Gluon-gluon fusion (gg):</u>

- dominating production process
- loop-induced pure process initiated
- by two gluons
 - \rightarrow dom. contr. \rightarrow top
 - \rightarrow subleading contr. \rightarrow bottom (<10%)
- Strong dependence on renormalization and factorisation scale
 - \rightarrow higher order corrections very important
- @ mH = 125 GeV → Xsec = 19.52 pb
- known to NNLO with O(15%)

- Higgs coupling ~ particle mass
 - ∙ g_{ffH} ~ m_f/v
 - g_{VVH} ~ M²_V/v
 - v ~ 246 GeV
 - Higgs coupling more likely to heavy particles

Vector boson fusion (VBF):

- two vector bosons mediated by quarks fuse to Higgs
- not pure: additional particles
- char. signature:
 - 2 jets in forward region
 - gap in rapidity distribution
- @ mH = 125 GeV → Xsec = 1.58 pb
- known to NLO with O(5%)

- Higgs coupling ~ particle mass
 - ∙ g_{ffH} ~ m_f/v
 - g_{VVH} ~ M²_V/v
 - v ~ 246 GeV
 - Higgs coupling more likely to heavy particles

Higgs strahlung (VH):

- directly sensitive to gVVH
 - \rightarrow associated production overcomes
- problem of large background

- Higgs coupling ~ particle mass
 - ∙ g_{ffH} ~ m_f/v
 - g_{VVH} ~ M²_V/v
 - v ~ 246 GeV
 - Higgs coupling more likely to heavy particles

ttH associated production:

- directly sensitive to gffH
- important for small mH
 - \rightarrow associated production overcomes
 - problem of large background

• Higgs production cross section with respect to the center-of-mass energy

Higgs decay

- @m_H = 125 GeV:
 - $H \rightarrow bb$
 - \rightarrow dominant process
 - → large QCD multijet background
 - → prevents Higgs search with gg and VBF production
 - H → gg:
 - \rightarrow QCD dominated background
 - → high rate
 - $H \rightarrow \gamma \gamma$:
 - → clean signature
 - \rightarrow small BR

Top decay

tt pair decay modes (channels):

- all-hadronic (BR=0.462):
 - Both W decay hadronically \rightarrow 4 jets + 2 b-jets
 - Overwhelming QCD multijet background

- leptons plus jets (BR=0.435):
 - One W decays leptonically, one hadronically
 - \rightarrow 2 jets + 2 b-jets, high pT lepton + neutrino
 - Modest background contribution: mainly W + jets

- dileptonic (BR=0.103):
 - Both W decay leptonically → 2 b-jets, two leptons + neutrinos
 - Lowest background contribution: mainly Z + jets

Top Pair Decay Channels

REWEIGHTING

June 16, 2014

LO/NLO reweighting

UBC

- Default ttH signal model was Pythia (Pythia6 @7TeV / Pythia8 @8TeV)
- Obtained NLO QCD accuracy prediction (PowHel) from theorists [Europhys.Lett. 96:11001,2011]
- Reweighted Pythia to PowHel → based on comparison of basic truth level kinematics
- PowHel with static scale $(m_t + m_H/2)$

- three (one) reweighting functions (fit LO/NLO ratio) @7TeV (@8TeV)
- → functions are applied as a multiplicative event-weight to the Pythia signal sample

SYSTEMATICS SYSTEMATICS

June 16, 2014

Higher orders and scale variation

UBC

Hadronic cross-section:

$$\sigma_{h_1h_2} = \sum_{i,j} \int \int dx_1 dx_2 \frac{f_{i/h_1}(x_1, \mu_F^2 \mid f_{j/h_2}(x_2, \mu_F^2)) \hat{\sigma}(x_i, x_j, \mu_R^2)}{\mathsf{PDF}_i} \frac{\hat{\sigma}(x_i, x_j, \mu_R^2)}{\mathsf{Xsec}_{\mathsf{partonic}}}$$

→ Partonic Xsec depends on the *renormalization scale* μ_R (short distance) → pQCD

→ PDF's depend on *factorization scale* μ_F (long distance) → global fits and data

Factorization theorem:

- allows the separation of non-perturbative (long distance) from perturbative (high energy) dynamics in QCD in certain kinematic regimes
- Non-physical scales are introduced in order to deal with divergencies occuring in perturbation theory
 - → cancel out when all orders in the perturbative expansion were considered
 - \rightarrow remain when stopping calculation at a fixed order
- Choice of scale is rather subjective
 - ightarrow Should be chosen close to the physical scale of the process
 - \rightarrow Needs to be evaluated on a case-by-case basis

Assign model systematic by varying the scale by a factor of two

Static scale variation

UBC

38

Static scale variation - shape uncertainty

- Most significant differences occur in ttH-pT distribution
 - 1. Reweight ttH-pT
 - Closure in ttH-pT
 - Impact on other kinematic distributions

2. Reweight top-pT

🛇 Overall effect on other kinematic distributions

Static scale variation – error band

- Apply inverse reweighting as multiplicative event-weight to the nominal signal sample
 - ightarrow Error band μ_0 fac2

• Is it sufficient to only consider this systematic?

Scale choice systematic

Dynamic scale for high p_T regions

- Does the choice of the scale shows an impact?
 - Static scale is reasonable at production threshold

 Is the prediction of the dynamic scale covered by the applied systematic for the static scale?

 $\mu_0=m_{
m t}+m_{
m H}/2$

$$\mu_0 = (m_{\rm T}^t m_{\rm T}^{\bar{t}} m_{\rm T}^H)^{\frac{1}{3}}$$

Scale choice impact

- Dynamic scale is covered by the static scale systematic
- NOT: ttH-pT and -eta
- Repeat reweighting in ttH-pT → apply additional systematic
 - symmetrize

Scale choice reweighting

43

June 16, 2014

Ratio

Ratio

10

Events

Ratio

Steffen Henkelmann - University of Brush Columbia

Signal scale systematics

• What we end up with:

• Static scale variation systematic

• Scale choice systematic

