

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Gamma-ray Spectroscopy in the Vicinity of ¹⁰⁰Sn

Jason Park, UBC/TRIUMF for the EURICA collaboration

Accelerating Science for Canada Un accélérateur de la démarche scientifique canadienne

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Motivation

¹⁰⁰Sn: heaviest self-conjugate doubly magic nucleus (N = Z = 50)

T. Faestermann et al. / Progress in Particle and Nuclear Physics 69 (2013) 85–130

Wealth of topics:

- Super-allowed Fermi/GT decays
- Isobaric analogue states, pn interaction
- High-spin isomers
- Proton dripline; βp, pdecay
- rp-process properties, i.e. T_{1/2}

Motivation

Single particle/hole energy predictions for ¹⁰⁰Sn

Global approaches have less predictive power for local properties

Experiment facility

RIKEN Nishina Center, Japan June 18 – 28, 2013

Radioactive Isotope Beam Factory (RIBF)

Isotope production & identification

RIKEN SRC

¹²⁴Xe beam 345 MeV/u 38 pnA (4.4×10⁹/s)

Isotope production & identification

RIKEN SRC

Fragmentation reaction $^{124}Xe + ^{9}Be \rightarrow \begin{cases} ^{100}Sn + \dots \\ ^{99}Cd + \dots \\ \dots \end{cases}$

Tag isotope's A and Z event-by-event

¹²⁴Xe beam 345 MeV/u 38 pnA (4.4×10⁹/s)

06/17/2014

4 mm ⁹Be target

Isotope production & identification

Isotope production & identification

Jason Park, CAP Congress Contributed Talk

Detector system – WAS3ABI

Wide-range Active Silicon-Strip Stopper Array for Beta and Ion detection

SSSD: $10 \times (7 \text{ strips}, 1 \text{ mm thick})$

Detector system – EURICA

<u>EU</u>roball-<u>RIKEN C</u>luster <u>A</u>rray: HPGe clusters + LaBr₃(Ce) detectors

12×7 HPGe crystals (15% efficiency at 661 keV)

 $18 \times \text{LaBr}_3(\text{Ce})$ detectors for short-lived isomer half-lives

Isotope production (8.5 days of beam)

- Previous record for ¹⁰⁰Sn was 259 (163 implanted) at GSI, Darmstadt, Germany in 2008 (C. B. Hinke et al., Nature 486, 341 (2012))

Analysis list

Topics	Research institutions
100 Sn decay spectroscopy (T _{1/2} , Q _β , 100 In gamma-rays)	TUM, cross-check analysis by TRIUMF
T _{1/2} of new isotopes ⁹⁹ Sn, ⁹⁸ Sn, ⁹⁷ In, etc	RIKEN
Isomers, isomeric ratios in ⁹⁹ In, ¹⁰⁰ Sn, ^{96/97} Cd	GANIL
98 In Fermi/GT decay $T_{\rm 1/2},$ search for proton decay	TU Darmstadt
¹⁰¹ Sn βp decay analysis for ground state spin	RIKEN
Q_{β} values for B_{GT} in $^{96/98}Cd$	TUM
Gamma-ray spectroscopy of abundant species for nuclear structure (⁹⁷ Cd, etc)	TRIUMF

Analysis list

Topics	Research institutions	
¹⁰⁰ Sn decay spectroscopy ($T_{1/2}$, Q_{β} , gamma-rays)	TUM, cross-check analysis by TRIUMF	
T _{1/2} of new isotopes ⁹⁹ Sn, ⁹⁸ Sn, ⁹⁷ In, etc	RIKEN	
Isomers, isomeric ratios in ⁹⁹ In, ¹⁰⁰ Sn, ^{96/97} Cd, GANII Preliminary results for: ⁹⁸ In F decay ⁹⁷ Cd \rightarrow ⁹⁷ Ag (β decay)/ ⁹⁶ Pd (βp decay) gammas, ¹⁰⁰ Sn \rightarrow ¹⁰⁰ In β-delayed gammas		
¹⁰¹ Sn βp decay analysis for ground state spin	RIKEN	
Q_{β} values for B_{GT} in ${}^{96/98}Cd$	TUM	
Gamma-ray spectroscopy of abundant species for nuclear structure (⁹⁷ Cd, etc)	TRIUMF	

⁹⁷Cd decay spectroscopy

${}^{97}Cd \rightarrow {}^{97}Ag \beta$ -delayed y-ray spectroscopy

${}^{97}Cd \rightarrow {}^{96}Pd$ (βp decay) y-ray spectroscopy

Proposed level scheme of ¹⁰⁰In

¹⁰⁰In y-ray coincidences

J. Park^{1, 2}, R. Krücken^{1, 2}, R. Gernhäuser³, M. Lewitowicz⁴, S. Nishimura⁵, H. Sakurai⁶,

H. Baba⁵, B. Blank⁷, A. Blazhev⁸, P. Boutachkov⁹, F. Browne¹⁰, I. Čeliković⁴, P. Doornenbal⁵, T. Faestermann³, Y. Fang¹¹, G. de France⁴, N. Goel⁹, M. Górska⁹, S. Ilieva¹², T. Isobe⁵, A. Jungclaus¹³, G. D. Kim¹⁴, Y.-K. Kim¹⁴, I. Kojouharov⁹, M. Kowalska¹⁵, N. Kurz⁹, G. Lorusso⁵, D. Lubos³, K. Moschner⁸, I. Nishizuka¹⁶, Z. Patel¹⁷, M. M. Rajabali¹, S. Rice¹⁷, H. Schaffner⁹, L. Sinclair¹⁸, P.-A. Söderström⁵, K. Steiger³, T. Sumikama¹⁶, Z. Wang¹, H. Watanabe¹⁹, J. Wu¹³, and Z. Y. Xu⁶

- 1. TRIUMF, Canada
- 2. University of British Columbia, Canada
- 3. Technische Universität München, Germany
- 4. GANIL, France
- 5. RIKEN Nishina Center, Japan
- 6. University of Tokyo, Japan
- 7. CENBG, France
- 8. University of Cologne, Germany
- 9. GSI, Germany
- 10. Brighton University, UK

- 11. Osaka University, Japan
- 12. TU Darmstadt, Germany
- 13. IES CSIS, Spain
- 14. Institute for Basic Science, Korea
- 15. CERN, Switzerland
- 16. Tohoku University, Japan
- 17. Surrey University, UK
- 18. University of York, UK
- 19. Beihang University, China

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Thank you! Merci

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Winnipeg | York

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada