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Research Hypothesis 

The basic hypothesis behind this talk is that if all 
the masses in the Universe have a common 
origin, through the interaction with a Higgs field, 
and if there is a way to bridge the gap between 
General Relativity and Quantum Mechanics, 
there must be some indirect manifestations of 
this phenomenon at different scales and may be 
some relationships could be pointed out 
between the different mass values as measured 
in this unifying representation.  
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Interdependence principle 

Spacetime curvature (S) and matter-energy density (E) 

are two inextricable information spaces defining the 

physically observable probabilistic universe (U); they 

must be mutually exploited to describe any subset Ui of 

this universe. The probability of observing a subset (Ui) 

is: 

   
( ) ( , ) 1i i iP U P S E 
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Spacetime curvature (S) and matter-energy density (E) 

are two inextricable information spaces defining the 

physically observable probabilistic universe (U); they 

must be mutually exploited to describe any subset Ui of 

this universe. The probability of observing a subset (Ui) 

is: 

   
( ) ( , ) 1i i iP U P S E 

A rephrasing of the Mach Principle 
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In terms of Bayes’law… 
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Building a star from scratch 

• Adding numerous identical particles (N→∞), 
each one with its own wave function, density 
function and associated space-time, as seen 
from a locally flat tangent space. 
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Building a star from scratch 

• Adding numerous identical particles (N→∞), 
each one with its own wave function, density 
function and associated space-time, as seen 
from a locally flat tangent space. 

• Making the convolution of their corresponding 
density functions. 

• The central limit theorem predicts that the 
ideal form of the global probability density will 
be a Gaussian multivariate function. 
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Curved vs flat space representations 
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Defining reference 2-spheres 
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Emergence of Newton’s law of gravitation 
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 where from now on, the curved hat over the coordinate r is omitted.  
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Challenges: keep coherent representations 
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Once upon a time... 

An observer living on a planet P orbiting a star, 

S, has defined a reference length unit lref   

and has then used (y lref)
3 

to define a reference volume  

in which he has poured into an amount x of a 

substance s1,  

to establish a macroscopic unit of inertial mass 

      uim.  
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Macroscopic vs Microscopic 

Moreover, on the same reference density basis, he has defined 
a microscopic unit of mass u from uim: 

    

where w is a weighting factor that takes into account the 
plausible ratio between the arbitrary units  uim and u 

and where N0 is a numerical constant such that the specific 

mass of any substance sx can be expressed in the macroscopic 
or microscopic scales using the same numerical value Zx: 

    

0uimu wN

( ) 0 (u)u u
x im xs u x im x s xm Z u Z wN m Z   
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Units of volumetric mass density 
This calibration process also lead him to define a 

local volumetric mass reference density           :   

  

 

which de facto defined the global unit of volumetric 

mass reference density:   

 

 

used in the present theory. 
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A first correction 

Since this theory refers to volumes defined     

in        , to find  a  mass         in a system based 

on      will require  respecting the following 

constraint: 
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Global unit of volumetric mass density 

 

The global unit of volumetric mass density can 

be recovered from any substance sx of inertial 

mass expressed in uim and volume expressed in 

lref
3 using: 
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Mass relationships 

In the context of the definition of the volumetric 

mass density unit   

which is substance independent and based on 

any unitary inertial mass to volume ratio, various 

relationships among inertial masses measured in 

the star system can be pointed out: 
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A Modified Gravitational Field 

According to a recent Bayesian model, the observer’s 

planet could be seen, in a curved spacetime 

representation, under low speed, weak field conditions, 
as attracted by a modified gravitation field: 

    

 

where   

is a range parameter representing the proper length of 
the star, that is the intrinsic scale of the star system. 
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A mandatory correction 

In this context, the interaction between a test 

mass m1 and a source mass m2  in both  N and M 

representations will respect the following 

constraint: 
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Heuristics 
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A mandatory correction 

In this context, the interaction between a test 

mass m1 and a source mass m2  in both  N and M 

representations will respect the following 

constraint: 
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Summary 
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Basic premise 

The whole M representation relies on a basic 

premise: the preservation of the volumetric mass 

density unit           , throughout the various 

spacetime projections that are necessary to 

model and understand a physical phenomenon.  
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P1: minimal reference test mass 
Fixing: 
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P1: minimal reference test mass 
Fixing: 
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To fix the ideas 

301.99 10 kggS SunM M  

1 2
18.01528 kgis H Om m 

1kg 1kg/1g 1000imu w   

1 /1 0.1y dm m 

245.98 10 kgP EarthM M  
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P2: maximal minimal gravitational 
reference test mass 

Fixing: 
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P2: maximal minimal gravitational 
reference test mass 
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P3: maximal minimal inertial reference 
source mass 
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P3: maximal minimal inertial reference 
source mass 
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P4: invariant mass scale factor 

Finally, since: 
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P4: invariant mass scale factor 
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P4: invariant mass scale factor 

Finally, since: 
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The local reference mass? 

Finally, the observer can presume the existence of a 

local mass reference  

that can bring any mass measurements with respect 

to his own planet data considered as a source mass, 

once the proper projections between the 1D 

kinematic observation space and 3D mass densities, 

all expressed in uim  unit, are taken into account: 

    

 

 

 

 

.iref locm
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Heuristics 
Maintaining a correspondence between the relative  

                      linear and volumic densities 
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P5:  local reference mass 

In other words, the local mass reference can be 
defined as:     
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P5:  local reference mass 

In other words, the local mass reference can be 
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Concluding Remark 
Using the modified gravitational model, derived from a 

potential link between General Relativity and Quantum 

Mechanics, and taking into account the various 

projections that are required to perform mass and 

density measurements respecting the star proper length , 

as well as considering the physical environment and the 

specific context in which these estimates are made, 

interesting numerical patterns among some mass 

references can be pointed out, which is in line with the 

hypothesis of mass common origin.  
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Concluding Remark 

Once instantiated with the Sun-Earth data, these 

predictions seem to be quite consistent with the 

numerical values measured on Earth. Among other 

things, the mass of the Higgs boson appears as a 

condition that maintains the relative linear and volumic 

densities among the various mass definitions: 
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Concluding Remark 

The overall process provides a practical criterion 

to evaluate the consistency of a system of mass  

units in a two body system, made up of a planet 

P and a star S: 
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Concluding Remark 

The overall process provides a practical criterion 
to evaluate the consistency of a system of mass  
units in a two body system, made up of a planet 
P and a star S: 
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macroscopic and microscopic description of the 
system. 

 

3 3

3 3

1

1/2 min

max min 2

1
exp

16

ref

ref

iref Sy l

gref gP imy l
s

m M

m M yu
m 

          



Réjean Plamondon, ACP 2014, Sudbury. 

To investigate further…  

A brief survey of the whole approach regarding 

emerging patterns: 

Pattern Recognition 47 (2014) 929–944 

“Strokes against stroke—strokes for strides” 

Réjean Plamondon, Christian O'Reilly, and 

Claudéric Ouellet-Plamondon. 
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To go deeper… 
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