# Dynamics of field-driven colloids

Edward Hayden, Tatsuo Izawa,

Anand Yethiraj

Memorial University,

St. John's, Newfoundland

# Why?

#### Driven colloids can be a model system...

- for dynamics in confined geometries.
- example: ion motion through narrow channels in membranes.
- for dynamics in glassy systems.

## **Normal diffusion**

#### **Bulk Diffusion**

- A random walk at all times:  $W_x(t) = \langle (x(t) x(0))^2 \rangle \sim 2Dt$
- Stokes-Einstein relation:  $D_{bulk} = k_B T/(6\pi \eta R)$

#### 2D diffusion at distance h from a surface

- "Faxen's law":  $D(h) = f(h)D_{bulk}$
- Example:  $R = 1\mu m$  fluorescent PMMA spheres in indexmatching solvent (bromocyclohexane-cis-trans-decalin)
- $-D_{bulk} = 0.1 \mu \text{m}^2/\text{s}$
- $-D_{surface} = 0.04 \mu \text{m}^2/\text{s}$



#### Particle hydrodynamics

• Finite concentrations: inter-particle hydrodynamic interactions can slow things further.

## Diffusion in 1D: "singe-file" diffusion

Hodgkin & Keynes, J. Physiol. 128, 61 (1955).

• Mechanical model for ion transport in membranes

Wei, Bechinger, Leiderer, Science 287, 625 (2000)



Nelissen, Misko, Peeters Europhys. Lett. 80, 56004 (2007).

- Short time: random walk with  $W_x(t) \sim t^1$
- intermediate time: single-file regime with  $W_x(t) \sim t^{0.5}$
- long time: normal collective diffusion of chain,  $W_x(t) \sim t^1$ .

## Quasi-1D diffusion and interactions

#### **Quasi-1D diffusion**

**Lucena..Peeters**, *Phys. Rev. E* **87**, 012307 (2013).

- relaxing the 1D constraint, define confinement parameter  $\chi$
- strong confinement (large  $\chi$ ):  $W_x(t) \sim t^{0.5}$
- lower  $\chi$ :  $W_x(t) \sim t^{\gamma}$  with  $\gamma$  increasing from 0.5 to 1.0

#### The role of attractive inter-particle interactions

**Lucena.** Peeters, Phys. Rev. E 87, 012307 (2013).

•  $\gamma < 0.5$ 

# **Experimental setup**



- Fluorescent PMMA microspheres in an index-matching solvent
- Particles sediment upwards
- Positively charged, extended double layer

## **Crossover:** dielectric ↔ ionic

#### 10 Hz: polarization charge is the source of dipolar interaction

• Dynamics as a function of frequency.

Long-time chain dynamics: 10 Hz

30 V/mm

17 V/mm

## Quasi-1D diffusion with dipolar attractions

#### Anisotropic structures induce anomalous dynamics



#### 17 V/mm: chain formation results in:

- sub-diffusive motion at all times with  $D_X < D_Y$ .
- same power law:  $\gamma_X = \gamma_Y \sim 0.8$

#### **30 V/mm:** stronger structuring:

- anisotropic dynamics: along the field (X)
- short times: :  $\gamma_X \sim 0.35$
- long times: :  $\gamma \sim 1.5!$
- perpendicular to the field (Y)
- sub-diffusive all times: :  $\gamma_Y \sim 0.5$



## Quasi-1D diffusion with dipolar attractions

#### Anisotropic structures induce anomalous dynamics



r/σ

# Quasi-1D diffusion with dipolar attractions

#### **Different regions**



## Dynamics in dipolar colloids simulations

Jordanovic, Jaeger & Klapp, Phys. Rev. Lett. 106, 038301, 2011



FIG. 2 (color online). (a)–(b) MSDs for  $\lambda = 7$  and  $H^* = 0$ , 10, 100. (b) Includes data for two system sizes; the box indicates the subdiffusive regime. (c)–(e) Corresponding snapshots.

- low field: short-time ballistic  $\rightarrow$  long times diffusive
- high field: Caging (sub-diffusive) and super-diffusive behaviours

## Low frequency dynamics: 1 Hz

#### Isotropic diffusion + time-dependent oscillations along field

• First signs of electrophoresis

• At frequencies below 1Hz, can get electrophoresis without structure formation.

• Normal diffusion perpendicular to the field



• Oscillatory motion + normal diffusion along field



# **AC** electrophoresis

### $f=250~\mathrm{mHz}$

• Dynamics as a function of amplitude.

## Low frequency dynamics: 250 mHz

#### **Stronger electrophoretic motion**



## Extracting particle $\zeta$ potentials

#### **Electrophoretic mobilities**



- EH01:  $3.7 \pm 0.8 \text{m}^2/(\text{V.s})$
- EH02:  $5.9 \pm 0.8 \text{m}^2/(\text{V.s})$
- $\zeta = 30 40 \text{ mV}$

## Two results

#### **Anomalous dynamics of dipolar chains**

- In the regime where dipoles are induced by an extended, distorted double layer.
- Short-time sub-diffusive behaviour is an extension of single-file diffusion to interacting and quasi-1D situations.
- Long-time super-diffusive behaviour at high coupling strength is unexplained:
- chain-chain attractions?
- subtle effect of small oscillations?

#### **AC** electrophoresis

• Opens a window into true out-of-equilibrium driven, dissipative systems.

#### **Thanks**

- NSERC for funding.
- Juergen Horbach and Stefan Egelhaaf (Uni. Duesseldorf) for discussions.