

Belle II — searching for new physics in the heavy flavor sector

Christopher Hearty University of British Columbia / IPP June 16, 2014

Belle / BaBar

- BaBar: PEP-II e⁺e⁻ collider, Stanford linear accelerator center, 1999–2008.
 Belle: KEKB collider, KEK laboratory, Tsukuba, Japan, 1999–2010.
- Core program: weak force, especially CP violation
- >500 publications (BaBar); >400 (Belle)

The announcement of the 2008 Nobel prize in physics cited the experimental results from Belle and BaBar

Belle II

- Upgrade of Belle, located at SuperKEKB.
- 40x the peak luminosity of KEKB; 30x the combined integrated luminosity of BaBar + Belle.

- 23 countries, 97 institutions, 600 collaborators, including 320 PhD physicists.
- Canada joined in March 2013; Italy and Mexico in July 2013 (SuperB refugees).

Physic goals

 To seek evidence for new physics through a wide range of measurements sensitive to the presence of virtual heavy particles.

Standard model process (left) is modified by the SUSY contribution on the right

- Asymmetries, rare decays, forbidden decays. Modes with well-known uncertainties in the standard model, and testable predictions in new physics models.
- Continued exploration of the weak force and CP violation.

Subset of the modes to be measured by Belle II

Observable/mode	Current	LHCb	Belle-II	LHCb	theory
				upgrade	
	now	(2017)	(2021)	(2028)	now
		$5\mathrm{fb}^{-1}$	$50\mathrm{ab}^{-1}$	$50\mathrm{fb}^{-1}$	
au Decays					
$\tau \to \mu \gamma \; (\times 10^{-9})$	< 44		< 3		
$\tau \to e\gamma \; (\times 10^{-9})$	< 33		< 3.7 (est.)		
$\tau \to \ell \ell \ell \ (\times 10^{-10})$	< 150 - 270	< 244	< 10	< 24	
$B_{u,d}$ Decays					
$BR(B \to \tau \nu) \ (\times 10^{-4})$	1.64 ± 0.34		0.04		1.1 ± 0.2
$BR(B \to \mu \nu) \ (\times 10^{-6})$	< 1.0		0.03		0.47 ± 0.08
$BR(B \to K^{*+} \nu \overline{\nu}) \ (\times 10^{-6})$	< 80		2.0		6.8 ± 1.1
$BR(B \to K^+ \nu \overline{\nu}) \ (\times 10^{-6})$	< 160		1.6		3.6 ± 0.5
$BR(B \to X_s \gamma) \ (\times 10^{-4})$	3.55 ± 0.26		0.13	0.23	3.15 ± 0.23
$A_{CP}(B \to X_{(s+d)}\gamma)$	0.060 ± 0.060		0.02		$\sim 10^{-6}$
$B \to K^* \mu^+ \mu^-$ (events)	250	8000	7-10k	100,000	-
$BR(B \to K^* \mu^+ \mu^-) \ (\times 10^{-6})$	1.15 ± 0.16		0.07		1.19 ± 0.39
$B \to K^* e^+ e^-$ (events)	165	400	7-10k	5,000	-
$BR(B \to K^* e^+ e^-) \ (\times 10^{-6})$	1.09 ± 0.17		0.07		1.19 ± 0.39
$A_{FB}(B \to K^* \ell^+ \ell^-)$	0.27 ± 0.14	?	0.03		-0.089 ± 0.020
$B \to X_s \ell^+ \ell^-$ (events)	280		7,000		-
$BR(B \to X_s \ell^+ \ell^-) \ (\times 10^{-6})$	3.66 ± 0.77		0.10		1.59 ± 0.11
$S \text{ in } B \to K^0_S \pi^0 \gamma$	-0.15 ± 0.20		0.03		-0.1 to 0.1
$S \text{ in } B \to \eta' K^0$	0.59 ± 0.07		0.02		± 0.015
$S \text{ in } B \to \phi K^0$	0.56 ± 0.17	0.15	0.03	0.03	± 0.02
B_s^0 Decays					
$BR(B_s^0 \to \gamma\gamma) \ (\times 10^{-6})$	< 8.7		0.2 - 0.3		0.4 - 1.0
A_{SL}^{s} (×10 ⁻³)	-7.87 ± 1.96	?	5.		0.02 ± 0.01
$BR(B_s \to \mu\mu) \ (\times 10^{-9})$	2.9 ± 1.0	±1		± 0.3	
$2\beta_s$ from $B_s^0 \to J/\psi\phi$	0.13 ± 0.19	0.019	-	0.006	
$S \text{ in } B_s \to \phi \gamma$	0.07	-	0.02		
D Decays					
x	$(0.63 \pm 0.20\%)$	0.06%	0.04%	0.02%	$\sim 10^{-2}$
y	$(0.75 \pm 0.12)\%$	0.03%	0.03%	0.01%	$\sim 10^{-2}$
y_{CP}	$(1.11 \pm 0.22)\%$	0.02%	0.05%	0.01%	$\sim 10^{-2}$
$\arg\{q/p\}$ (°)	-10.2 ± 9.2	4.4°	1.4°	2.0°	$\sim 10^{-3}$

adapted from "The impact of SuperB on flavour physics", arXiv:1109.5028 [hex-ex]

CKM fits

• Need lattice improvements to fully exploit Belle II

Complementarity

- If the LHC sees direct evidence of new physics, the corresponding deviations from the standard model predictions can identify its nature.
- LHCb: great B and charm statistics, charged particle reconstruction.
- Belle II: well-defined initial state; ability to reconstruct final states with photons (π⁰ mesons) and neutrinos; tau physics.

Fully reconstructed B sample

- A unique and powerful tool of Belle II
- Can also use $B \to D^{(*)} \ell \nu \text{ decays}$

 For signal events there should be ~0 additional energy (E_{extra}) present in the calorimeter. $B^+ \to \tau^+ \nu_{\tau}$

• Enhance or suppress

$$\mathcal{B} = \mathcal{B}^{SM} \times \left(1 - m_B^2 \tan^2 \beta / m_{H^{\pm}}^2\right)^2$$
$$\mathcal{B}^{SM} = 1.0 \times 10^{-4} \ (\tau)$$
$$= 4.5 \times 10^{-7} \ (\mu)$$
$$= 8 \times 10^{-12} \ (e)$$

• Same percentage effect for $B^+ \to \tau^+ \nu$ and $B^+ \to \mu^+ \nu$

$$\tau^+ \to \mu^+ \gamma$$

Unambiguous sign of new physics. Many charged flavor violating decays available.

SuperKEKB

- Huge increase in luminosity comes from a 2x increase in current and a ~15x decrease in beam size. Upgrades to most systems.
- 2.6A of e⁻ @ 7 GeV
 3.6A of e⁺ @ 4 GeV
 8 x 10³⁵ cm⁻²s⁻¹

New superconducting final focus magnets near the interaction point

Improved monitors and controls

Replace beam pipes with TiN-coated beam pipes with antechambers

Redesigned lattice

New e⁺ damping ring

Additional RF for beam current

The Belle II detector

• Upgrades aim for best possible performance in the face of high event rates and high backgrounds.

Backgrounds

- High luminosity \Rightarrow high rate of $e^+e^- \rightarrow \gamma e^+e^-$ •
- radiation damage, photosensor aging, pileup

Background shielding

- Tungsten shielding in magnets.
- ECL shield will be lead + neutron absorber; reduces peak dose by a factor of 2.

ECL shield, lead only

See Alex Beaulieu's talk in session T1-2 on Tuesday

Commissioning detector—BEAST II

- Important to characterize backgrounds and compare to simulation prior to start of physics.
- Variety of detectors for phase I (Oct 2015, before Belle II roll-on); vertex detectors only for phase II.

Sam de Jong (Victoria PhD student) is developing thermal neutron detectors

Vertex detector

- Two layers of pixels (DEPFETs) and four layers of silicon strips.
 - first layer at r = 14 mm; much less material than Belle DEpleted P-channel FET

Vertex detector beam test

- One pixel (PXD) layer with four layers of silicon strips (SVD). Full readout chain, 1 T magnetic field.
- Successful test, including "regions of interest" readout. To reduce data rate, project SVD tracks into pixels and read only those regions.

• Focus now on production; little schedule contingency.

iTOP: particle ID using Cherenkov radiation in fused silica bars

iTOP status

- Procurement of precision optical components has been difficult. Production is under way. Two vendors for bars.
- Design of complex opto-mechanical system is close to finalized
- Passed DOE CD-2/3 review
- ~1/2 of iTOP will be in place for first physics run.

Calorimeter

- Precise measurements of γ (π^{0}) and E_{extra} is critical to our physics program, particular with respect to LHCb.
- Belle II is reusing the CsI(TI) crystal calorimeter from Belle, with new digitization and waveform fitting electronics.
 Excellent resolution, but quite slow.

Csl crystal

Chloe Malbrunot

Pure Csl upgrade

- Canadian and Italian groups have been investigating an upgrade of the forward endcap calorimeter to pure Csl.
- 30x faster signals (so 30x less pileup) but 30x less light.
- Fine mesh PMTs with new preamps/HV dividers, new shapers/waveform fitting.

 Preamp & digitizing electronics under development at U. Montreal. Electronic noise equivalent energy ~70 keV; much better than existing CsI(TI)

Fine mesh PMT with prototype preamp on pure Csl crystal

Mechanical modifications

• PMTs are larger than existing photodiodes, so mechanical structure requires modification.

pure CsI with PMTs and preamps

Status of pure Csl upgrade

- Although the pure CsI clearly has better energy and timing resolution, we have not established that we will get significantly better physics results.
- Current background estimations, including shielding, predict radiation doses in the CsI(TI) crystals within safe operating limits.
- We are not submitting an application to CFI for this round.
- We will continue to work within the ECL group to ensure the best possible calorimeter performance.
 - e.g., beam test of irradiated CsI(TI) prototype at M11

Schedule

- Accelerator construction for phase I will be completed by March 2015 (FY14). Commissioning in three phases:
- Phase 1: No superconducting IR magnets; no Belle II.
 - Basic tuning, vacuum scrubbing
- Phase 2: Full accelerator; Belle II except vertex detector and TOP.
 - beam collision tuning, background studies
- Phase 3: Full detector, with ~1/2 of TOP
 - First physics. $L = 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

Schedule II

 Significant cuts to KEK operations budget this year will delay start of commissioning to FY15 (spring/fall 2015).

• The preparation work to be covered by the operation budget includes followings:

- place radiation shields back at four experimental hall.
- operate refrigerators and cool down superconducting cavities
- startup klystrons and condition the ARES and SC cavities
- startup and adjust magnets and power supplies
- final precise alignment of magnets around the ring before beam operation
- startup vacuum, monitor, and other systems
- electricity charges for the above works (in particular, magnets, refrigerator, klystrons and cavities)
- more operators for 24 hour shifts
- First physics run ~2 years later.

First year physics plan

- B physics topics require high-momentum particle ID more than other topics. We are considering alternatives to the Y(4S) for the first run. Maybe few hundred fb⁻¹.
- Y(2S): dark forces, light Higgs PRD 80 (2009) 074010
- $Y_{(see also arXiv:1010.6457)}^{arXiv:0907.2110}, Z_{b}$
- r_B scan

• Y(3S): conventional bottomonium

Luminosity projection

Computing

- Raw data storage and processing at KEK; second copy of raw data distributed elsewhere. Physics data distributed for analysis. Grid + cloud for MC production.
- Focus on MC production so for. Cloud computing at Victoria, "Infrastructure as a service". Grid MC production at CLUMEQ (McGill).

Computing hardware outlook

- Hardware requirements are comparable to current LHC.
- Canada: 5% of raw; 10% of mDST; 3% of MC production.

Canadian group

- U. British Columbia: C. Hearty, J. McKenna, T. Mattison,
 D. Fujimoto
- U. Victoria: M. Roney, R. Kowalewski, R. Sobie,
 A. Beaulieu, S. de Jong, S. Longo, F. Berghaus,
 P. Poffenberger
- McGill U.: S. Robertson, A. Warburton, R. Cheaib,
 R. Seddon
- U. Montreal: J.P. Martin, P. Taras, N. Starinski