XPS measurements of sodium in Bridgman-grown CuInSe_{2+x}

by Sunyoung Park, C. H. Champness and I. Shih Electrical and Computer Eng., Dept. McGill University

Sunyoung Park Ph.D. student

Solar cell efficiency with added Na₂Se (Nakada and Ohbo, 1997)

A quartz ampoule with Cu, In, Se, and Na

Bridgman Growth Apparatus

Bridgman-grown ingot

Bridgman-grown ingot

CuInSe_{2+x} n-type If [Na]>[Na]_{crit} =2x+δ

Before abrasion

After abrasion

XPS survey scans for different locations of an ingot

Binding Energy (eV)

Na1s scan

Na1s scan

HMB56 (3 at. % Na) curved

[Cu]_{surf} vs. [Na]_{surf}

[Cu]_{surf} vs. [Na]_{melt}

[Se]_{surf} vs. [Na]_{sulf}

Conclusions

- The present results in Bridgman-grown CuInSe_{2+x} demonstrate that:
- (1) The main variations in ternary composition occur in the first 100 nm from the ingot surface, even without Na addition.
- (2) With increase of up to about 1 at. % of added elemental Na to the melt, the relative surface concentration of Cu is decreased and that of Se, in p-type (bulk) material, is increased.
- (3) The Na is mostly present in a 0.2 micron surface layer and none is detected by XPS in the bulk.
- (4) The reduction of Cu proportion at the surface occurs with and without added Na but is accentuated with up to 1 at. % of added Na in the melt.
- (5) Some of the XPS results may have been affected by the abundant carbon present.
- (6) For samples exposed to air, the addition of Na gives rise to the extra compounds CuSe₂, Na₂SeO₄, and Na₂SeO₃, at least at the surface.

The End

The End