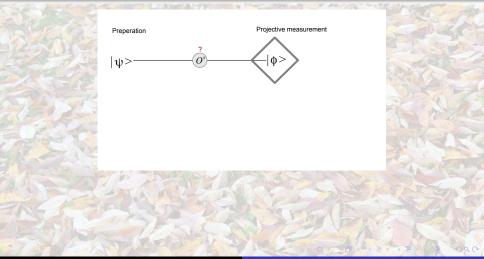
Weak measurements with an ensemble quantum processor.

Aharon Brodutch

University of Waterloo

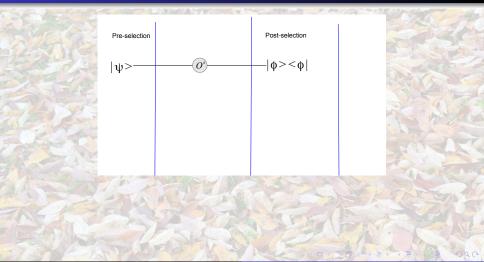
2014 CAP Congress

Intorduction Why weak measurements

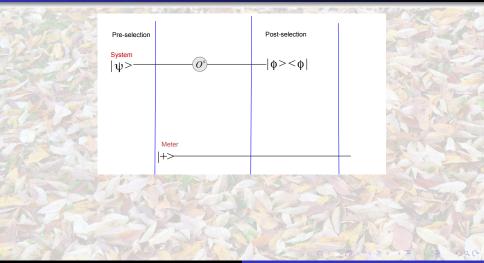

Dawei Lu, Aharon Brodutch, Jun Li, Hang Li and Raymond Laflamme

Experimental realization of post-selected weak measurements on an NMR quantum processor

New J. Phys. 16 053015 (2014) arXiv: 1311.5890

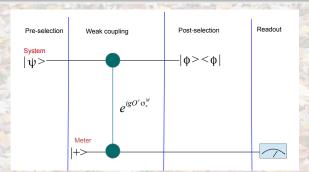

Weak measurements in an ensemble QP The experiment Outlook Intorduction Why weak measurements

What can we say about a quantum system between two measurements?


Weak measurements in an ensemble QP The experiment Outlook Intorduction Why weak measurements

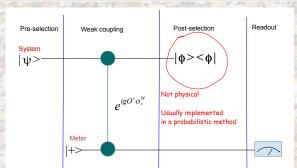
What can we say about a quantum system between two measurements?

Weak measurements in an ensemble QP The experiment Outlook Intorduction Why weak measurements


What can we say about a quantum system between two measurements?

Aharon Brodutch Weak measurements with an ensemble quantum processor.

Weak measurements in an ensemble QP The experiment Outlook Intorduction Why weak measurements


What can we say about a quantum system between two measurements?

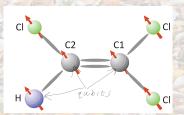
For g << 1 the meter is rotated by an angle proportional to the weak value $\{O^S\}_w = \frac{\langle \psi | O^S | \phi \rangle}{\langle \psi | \phi \rangle}$

Weak measurements in an ensemble QP The experiment Outlook Intorduction Why weak measurements

What can we say about a quantum system between two measurements?

For g << 1 the meter is rotated by an angle proportional to the weak value $\{O^S\}_w = \frac{\langle \psi | O^S | \phi \rangle}{\langle \psi | \phi \rangle}$

Weak measurements in an ensemble QP The experiment Outlook Intorduction Why weak measurements


Why weak measurements?

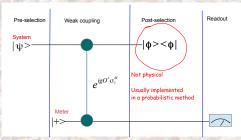
- Weak values are observable[Aharonov Albert Vaidman, PRL 1989; Vaidman, FoP 1991]
- Post selection paradoxes: 3box [Aharonov Vaidman, JPA 1991] Hardy's [Aharonov et al., PLA 2002]
- Measurement without disturbance [Rozema et al., PRL 2012]
- Improved precision [Jordan Martinez-Rincon Howell, arXiv 2013]

Post selection is also useful elsewhere

NMR quantum processors No projective measurements Post selection with ensemble averages

Molecules as quantum processors

$$\mathcal{H} = \sum_{j=1}^{3} \pi \nu_j \sigma_z^j + \frac{\pi}{2} (J_{13} \sigma_z^1 \sigma_z^3 + J_{23} \sigma_z^2 \sigma_z^3) \\ + \frac{\pi}{2} J_{12} (\sigma_x^1 \sigma_x^2 + \sigma_y^1 \sigma_y^2 + \sigma_z^1 \sigma_z^2),$$


- Control dynamics by rotating individual qubits
- Readout is an average over all molecules

Aharon Brodutch

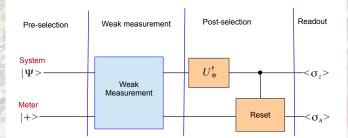
Weak measurements with an ensemble quantum processor.

NMR quantum processors No projective measurements Post selection with ensemble averages

Why is it hard to post-select in NMR?

- In an experiment post-selection is not always successful.
- Usually post selection is done by discarding experiments which fail post selection.
- Requires access to individual outcomes.
- But we can only access an average over many simultaneous runs of the experiment.

NMR quantum processors No projective measurements Post selection with ensemble averages


Post selection with ensemble averages

The idea is to reset the meter when post selection is unsuccessful

NMR quantum processors No projective measurements Post selection with ensemble averages

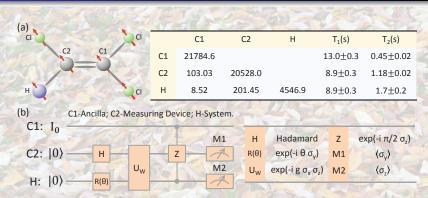
Post selection with ensemble averages

The idea is to reset the meter when post selection is unsuccessful

The reset *R* is conditioned on the system being in $|1\rangle$ and obeys $Tr[\sigma_n R(\rho)] = 0$ for all ρ . Choosing $\hat{n} = \hat{y}$ we find: $Re(\{\sigma_x\}_w) \approx \frac{\langle \sigma_y^{\mathcal{M}} \rangle}{g(\langle \sigma_z^{\mathcal{S}} \rangle + 1)}$ Note: *R* is not unitary.

Aims Experimental circuit for real weak values Real weak values Complex weak values

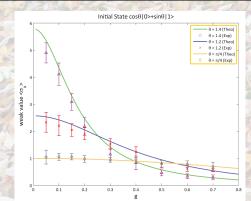
Aims for the experiment


The first experimental implementation of weak measurements without optics

- As proof of principle we wanted to show measure two main features of weak measurements
 - Weak values beyond the range of eigenvalues
 - 2 Complex weak values

Aims Experimental circuit for real weak values Real weak values Complex weak values

Experimental circuit


To perform the reset operation we prepare an ancilla in the maximally mixed state and use a control control σ_z with both system and ancilla as controls.

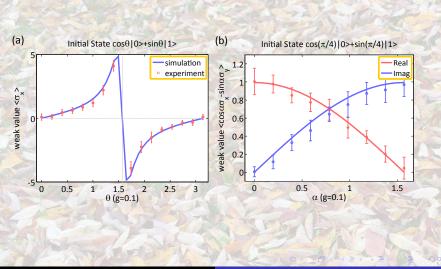
Aims Experimental circuit for real weak values **Real weak values** Complex weak values

Real weak values

The observed 'weak value' as a function of the coupling strength

Outlook

The initial state is $\cos(\theta) |0\rangle^{S} + \sin(\theta) |1\rangle^{S}$, the weak measurement is of σ_{x} and the post-selection was $|0\rangle^{S}$


 Weak measurements
 Aims

 Weak measurements in an ensemble QP
 Experimental circuit for real weak values

 The experiment
 Real weak values

 Outlook
 Complex weak values

More weak values

Aharon Brodutch Weak measurements with an ensemble quantum processor.

Conclusions and outlook

- We measured weak values outside the range of eigenvalues and complex weak values
- Measurements of large weak values are limited by decoherence and weak signal
- Can we still use this scheme for precision measurements?
- Realization of weak measurement experiments on more qubits than other platforms
- More fun with post-selection