μ SR Investigation of Doped IrTe₂

Murray Wilson

Jiaqiang Yan, David Mandrus, Timothy Munsie, Teresa Medina, Graeme Luke

- Motivation
- μSR Introduction
- $Ir_{0.95}Pt_{0.05}Te_2 TF \mu SR$
- $Fe_{0.33}Ir_{0.83}Te_2 ZF \mu SR$
- Conclusion

Motivation – IrTe₂

lr

Te

Layered structure High spin-orbit coupling

Structural transition

Motivation

Feng Sci. Rep. 3 1153 2013

µSR Technique

3/15

J.E. Sonier Muon Spin Rotation/Relaxation/Resonance (µSR)

µSR Technique

µSR Technique

$Ir_{0.95}Pt_{0.05}Te_2$

Superfluid Density

 $\sigma^2 - \sigma_N^2$

 $\sigma_{SC} =$

Superfluid Density

Pt-IrTe₂

$$n_{s} = \frac{m}{\mu_{0}\lambda_{0}^{2}e^{2}} \left[1 + 2\int_{\Delta(T)}^{\infty} dE \, \frac{e^{E/(k_{B}T)}}{(e^{E/(k_{B}T)} + 1)^{2}} \frac{E}{\sqrt{E^{2} - \Delta(T)}} \right]$$

10/15

BCS Comparison

Ir _{0.95} Pt _{0.05} Te ₂ Present Work	Ir _{0.95} Pd _{0.05} Te ₂ Ref. [1] (STS)	BCS weak coupling
$\Delta_0 = 0.33 \text{ meV}$ $T_C = 2.2 \text{ K}$ $\frac{2\Delta_0}{k_B T_C} = 3.5$	$\Delta_0 = 0.39 \text{ meV}$ $T_C = 2.5 \text{ K}$ $\frac{2\Delta_0}{k_B T_C} = 3.6$	$\frac{2\Delta_0}{k_B T_C} = 3.5$

[1] D.J. Yu et. al PRB 89, 100501(R) March 4 2014

Fe_{0.33}Ir_{0.83}Te₂ Single Crystal

ZF μSR Fe-IrTe₂

Spin Glass $T_c \approx 10K$

14/15

Conclusions

Fe-IrTe₂ spin glass, $T_c \approx 10K$

Pt-IrTe₂ weak coupling fully gapped BCS superconductor, $T_c = 2.24K$

Acknowledgments

McMaster University

Timothy Munsie Alannah Hallas Teresa Medina Dr. Graeme Luke

Lian Liu **Benjamin Frandsen** Dr. Yasutomo Uemura

Dr. Bassam Hitti Dr. Gerald Morris

Dr. Jiaqiang Yan Dr. David Mandrus

