DEAP-3600 Dark Matter Search at SNOLAB

Mark Boulay Queen's University, Kingston

DEAP Collaboration

University of Alberta

D. Grant, P. Gorel, **A. Hallin**, J. Soukup, C. Ng, B.Beltran, K. Olsen, R. Chouinard, T. McElroy, S. Crothers, S. Liu, P. Davis, and A. Viangreiro

Carleton University

K. Graham, C. Ouellet, Carl Brown

Queen's University

M. Boulay, B. Cai, D. B. Broerman, Bearse, J. Bonnat, K. Dering, M. Chen, S. Florian, R. Gagnon, V.V. Golovko, P. Harvey, M. Kuzniak, A. McDonald, C. Nantais, A.J. Noble, E. O'Dwyer, P. Pasuthip, L. Veloce, W. Rau, T. Sonley, P. Skensved, M. Ward

SNOLAB/Laurentian

B. Cleveland, F. Duncan, R. Ford, C.J. Jillings, E. Vazquez Jauregui, T. Pollmann, C. Stone

SNOLAB

I. Lawson, K. McFarlane, P. Liimatainen, O. Li,

TRIUMF

F. Retiere, Alex Muir, P-A. Amaudruz, D. Bishop, S. Chan, C. Lim, C. Ohlmann, K. Olchanski, V. Strickland

Rutherford Appleton Laboratory

P. Majewski

Royal Holloway University of London

J. Monroe, J. Walding, A. Butcher

University of Sussex

Simon Peeters

Collaboration Demographics

13 Faculty/PIs in Canada (+ 3 PIs UK)

8.5 PDFs/RAs8 GRAs~5 undergraduates

Site Installation Staff (5+1 supervisor for construction phase)

~9 technical support

Substantial support from MRS personnel and TRIUMF

Liquid argon as a dark matter target

Scattered nucleus (with several 10's of keV) is detected via scintillation in liquid argon.

- •Well-separated singlet and triplet lifetimes in argon allow for good pulse-shape discrimination (PSD) of β/γ 's using only scintillation time information, projected to 10^{-10} at 15 keV_{ee} (see Astroparticle Physics 25, 179 (2006) and arxiv/0904.2930)
- •Very large target masses possible, since no absorption of UV scintillation photons in argon, and no e-drift requirements.
- •1000 kg argon target allows 10⁻⁴⁶ cm² sensitivity (SI) with ~15 keV_{ee} (60 keVr) threshold, 3-year run

DEAP-3600 Projected Physics Sensitivity

Physics Sensitivity

Sensitivity to parameters of simple SUSY models (cMSSM and NUHM)

Sensitivity to Low-Mass WIMPs in DEAP-3600

Annual modulation of detected rate provides sensitivity to low masses (~10 GeV)

DEAP-3600 Detector

3600 kg argon target (1000 kg fiducial) in sealed ultraclean Acrylic Vessel

Vessel is "resurfaced" in-situ to remove deposited Rn daughters after construction

255 Hamamatsu R5912 HQE PMTs 8-inch (32% QE, 75% coverage)

50 cm light guides +
PE shielding provide neutron
moderation

Steel Shell immersed in 8 m water shield at SNOLAB

IPP AGM M. Boulay June 15 '14

DEAP-3600 Background Budget (3 year run)

	Background	Raw No. Events in Energy ROI	Fiducial No. Events in Energy ROI	
	Neutrons	30	<0.2	Acr+H ₂ O shield
_	Surface α's	150	<0.2	Acr+H ₂ O shield Resurfacer
	³⁹ Ar β's (natural argon)	1.6x10 ⁹	<0.2	- PSD
	³⁹ Ar β's (depleted argon)	8.0x10 ⁷	<0.01	

Need to resurface inner vessel and ensure purity of acrylic.

- removal of 1 mm acrylic
- 210Pb < 1.1x10⁻¹⁹ g/g for 0.1 events/3 years (strict control of Rn exposure)

Fabrication of DEAP Acrylic

- Fabrication from MMA monomer, strict control of radon exposure for all steps
- Moulds were prepped in a HEPA-filtered clean room made especially for DEAP (RPT Asia)
- DEAP Collaborators present during fabrication
- Control to $< 10^{-20}$ g/g 210 Pb from radon exposure

DEAP Acrylic Panels at RPT Asia in 2010

- Require assay of acrylic at levels of 10⁻²⁰ g/g ²¹⁰Pb
- Requires vapourization to concentrate contaminants followed by chemical extraction followed by counting in a Germanium well detector or alpha-counter

New Furnace and extraction system developed for acrylic assay

New Ge-well detector installed @ SNOLAB (~few counts per day for 46 keV line)

Also directly α -count ²¹⁰Po daughters after depositing on nickel

Spike with ²²²Rn into acrylic cylinder

DEAP AV acrylic assay and backgrounds

Nantais M.Sc. Thesis result (Queen's, 2014):

 210 Pb: < 2.2 x 10^{-19} g/g

(< 0.2 bkd events in 3 years)

(results from Corina Nantais, M.Sc. thesis work)

Acrylic Vessel Resurfacer

- Low-Radon emanation components
- Remove 1-mm surface in situ
- Cleans surface to bulk-level cleanliness

(100,000 cleaner than SNO AV surface for ²¹⁰Pb from radon / alphas)

IPP AGM M. Boulay June 15 '14

AV Fabrication (RPT Colorado and U of A)

AV neck bonding underground (December 2012-January 2013)

IPP AGM M. Boulay June 15 '14

DEAP-3600 Detector Assembly

Acrylic Light Guide Specular reflector + opaque wrap PE neutron shielding "blocks" PMT with silicone oil coupling

Copper sleeve over PMT

Completed inner detector

Status of DEAP-3600 Installation at SNOLAB

Cryosystem, electronics

Detector ready for Final Lift onto Neck

Steel Shell in shield tank

View down detector neck IPP AGM M. Boulay June 15 '14

DEAP-3600 Argon Cooling System

Commissioning at 86K, June 11 2014

IPP AGM M. Boulay June 15 '14

DEAP-3600 Development Highlights

- Development of acrylic thermoforming and fabrication of spherical acrylic vessel (R&D in collaboration with Reynolds Polymer – thickness/curvature ratio beyond what had been fabricated previously); qualification of acrylic for cryogenic use
- Development of acrylic bonding technique for in-situ bonding of large diameter Light Guides to Acrylic Vessel (255 bonds underground)
- Ultrahigh purity and radon control for acrylic panel and light guide fabrication; development of new assay technique for ²¹⁰Pb in acrylic at the 10⁻²⁰ g/g level; Observation of Rayleigh scattering in acrylic due to locked in stress and remediation through high-temperature annealing; demonstration of large-scale fabrication of acrylic with optics near the Rayleigh limit
- Development of PMT to acrylic lightguide coupling with o-ring seals and silicone oil coupling fluid
- Radon control in welded Stainless Steel; development of stainless steel citric acid passivation for radon emanation control (in argon purification system)

DEAP-3600 Development Highlights

- Ultrahigh purity materials selection (acrylic, stainless steel, polyethylene, cables, connectors, various components – several years of materials assays)
- Mechanical sanding robot (the Resurfacer) with controlled radon emanation
- Development of argon purification and radon filter for ultralow background argon;
 development of large-scale cryogenic cooling system for argon
- Seismic protection and Oxygen Deficiency mitigation for multi-tonne argon target underground
- Fabrication of a large (21,000 L) vacuum vessel with sealing flanges welded together in-situ underground
- Development of large-area (10 m²) 4π thin-film vacuum deposition technique
- Characterization of readout with HQE PMTs and development of high-rate digitizing electronics and trigger
- Extensive calibration and simulations program; detailed modeling of surface effects and pulse-shape discrimination with comparisons to data (DEAP-1)

Presentations at CAP

DEAP-3600 Dark Matter Detector
Organic Thin Film Deposition System for DEAP-3600
Surface Alpha Background Mitigation in DEAP-3600
Characterization of DEAP-3600 PMTs
DEAP-3600 Resurfacer Deployment and Testing
Cryogenic Liquid Safety for DEAP-3600

DEAP-3600 Light Guide Bonding
DEAP-3600 Optical Calibration Systems
DEAP-3600 Argon Process Systems

Aksel Hallin, Alberta (W2-7)
Ben Broerman, Queen's (W2-7)
Joshua Bonnat, Queen's (R1-9)
Paradorn Pasuthip, Queen's (R1-9)
Pietro Giampa, Queen's (F1-5)
Tom Sonley, Queen's (F1-5)

Thomas McElroy, Alberta (POS-28) Pietro Giampa, Queen's (POS-29) Mark Ward, Queen's (POS-33)

Also, several posters and components setup for display at the experiment underground in the SNOLAB Cube Hall

DEAP-3600 Project Timeline

Milestone	Date
-----------	------

Installation of Detector under Neck

Start of Resurfacing

Calibrations and commissioning (warm)

Start of Physics Data Collection

June 23, 2014

July 2014

Aug 2014

Oct-Nov, 2014

DEAP-50T: Follow-up with 50-tonnes of liquid argon (Development Proposal)

150-tonnes DAr in AV 50-tonne fiducial

CFI Proposal for development of:

- Photodetector Development
- UG screening/storage of Low Radioactivity Argon
- Low Background Cryogenic Test Facility
- Seismic/safety engineering

Target sensitivity for **DEAP-50T** (50 Tonne Fiducial Argon) is at ultimate limit set by atmospheric neutrinos

Physics Sensitivity with DEAP-50T:

Sensitivity at "Floor" set by irreducible background from atm. neutrinos

Summary

DEAP-3600 sensitive to SI DM interactions at 10⁻⁴⁶ cm²; factor of 23X improvement at high WIMP mass over current LUX leading result

Start of Physics Collection at SNOLAB Fall 2014

 Proposal being developed for 50T follow-up program, reaches ultimate DM sensitivity limit from atmospheric neutrinos