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Local Operations with Classical Communication

LOCC: set of multiparty quantum operations that can be 
implemented if each party can apply local operations, and 
they can communicate classical information to one another.  

• Operationally motivated 
class communication much easier than quantum

• Connection to fundamental quantum information
class communication is generated by measurement 
which extracts information and disturbs the q state

• Complementary study to entanglement theory

• Applications: quantum error correcting codes, data hiding, ...
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Local Operations with Classical Communication

e.g. Discrimination of the double trine states [Peres-Wootters 94]

• Optimal global strategy known 
(accessible info, min error, unambiguous discrimination) 

• LOCC discrimination was conjectured suboptimal, recently   
proved for some measures of success [Chitambar-Hsieh 13]

• Optimal LOCC strategy still unknown !

For a random k ∈ {0,1,2}, 
Alice and Bob each receives   
cos(2π/3)k |0i + sin(2π/3)k |1i
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Local Operations with Classical Communication

Why so difficult:

• “Information gain implies disturbance” is not fully understood
(cf QKD with bound entangled states, locking, bounded-storage
crypto models, nonlocality without entanglement)

• No succinct mathematical description for LOCC

SEP:quantum operations with tensor product Kraus operators
PPT: quantum operations preserving PPT states

Often use: LOCC ⊂ SEP ⊂ PPT

Useful relaxations ... except for studying SEP\LOCC.  

• Potentially unbounded # of communication rounds or 
intermediate results   
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Plan:

• LOCC 101   
(from 1210.4583 & Lo-Fortescu 06)

• State discrimination by LOCC
(largely survey)   



LOCC:

• m parties

• For fixed k (# measurement outcomes), an instrument J
is a k-tuple (E1, E2, L, Ek) where each Ei is a completely
positive map and ∑i=1

k Ei is trace preserving.

J is associated with the TCP map: ρ → ∑i=1
k Ei(ρ) ⊗ |iihi|

• Distance on the set of instruments is induced by the 
diamond norm on the associated TCP maps

• In 1 round of communication, one party can broadcast
unlimited amount of classical data to all other parties 
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LOCC:

• LOCCr : instruments realized with LO and r rounds of comm

• LOCCN := Ur LOCCr 

•

• cl(LOCCN) := topological closure of LOCCN

Operationally: 

cl(LOCCN) includes all m-party instruments that can be approx
to arbitrary precision by a sequence {J1,J2,...} in LOCCN

finite
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LOCC:

• LOCCr : instruments realized with LO and r rounds of comm

• LOCCN := Ur LOCCr 

• LOCC∞ := LOCCN + limit points of special sequences 

• cl(LOCCN) := topological closure of LOCCN

Operationally: 

cl(LOCCN) includes all m-party instruments that can be approx
to arbitrary precision by a sequence {J1,J2,...} in LOCCN

LOCC∞ : instrument that can be approx by adding more and 
more rounds of communication without changing earlier steps.  

finite
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m≥3: 
Chitambar,
Cui, Lo 12

rand dist

LOCC:

• LOCCr : instruments realized with LO and r rounds of comm

• LOCCN := Ur LOCCr 

• LOCC∞ := LOCCN + limit points of special sequences  

• cl(LOCCN) := topological closure of LOCCN

LOCCr ⊂ LOCCr+1 ⊂ LOCC∞ ⊂ cl(LOCCN)  ⊂ SEP
≠ ≠ ≠ ≠

∀ r, m=2: Duan-Xin 08, perfect 
discrimination of O(r2) states in Cr ⊗ Cr

r=1: QKD, ent distillation, ...

∀ r, m≥3: Chitambar11, random
distillation of 3-qubit states (“gapped”)

m=2: 
Chitambar, L, Mancinska, 
Ozols, Winter 12, 2-qubit J

m=2: 
nonlocality 
w/o ent
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Thus, when considering whether certain instrument can be 
"performed" in LOCC, we have to distinguish all 3 possible 
cases: 

- instrument can be performed in finitely many LOCC steps

- instrument cannot be performed in finitely many LOCC steps
but can approximated better and better 

- instrument cannot even be approximated by LOCC
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What’s in cl(LOCCN) \ LOCC∞ : 

Random distillation of W states [Chitambar-Cui-Fortescu-Lo]:

Consider {J1, J2,..., Jr ,...} :

POVM 

3 parties: A, B, and C
Let |Wi = (|001i + |010i + |100i) / √3

|EPRi = (|00i + |11i) / √2

Goal: convert |Wi on ABC to |EPRi on AB, BC, or AC 

(Known: cannot convert W-state to EPR pair on two 

specific parties, here, doesn't care which two parties 

receive the EPR pair)
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|0i|EPRi etc
|001i etc

Postmeas state Prob

2²(1-²)
²2

(1-²)2

Jr: try r times, pr[success] = (1-(1-²)2r) 2(1-²)/(2-²) < 1  ∀r. 

Optimize ² based on r, pr[success] → 1 as r → ∞.

So exact random distillation is in cl(LOCCN) but not in LOCC∞

What’s in cl(LOCCN) \ LOCC∞ : 

Consider {J1, J2,..., Jr ,...} :
A, B, C each applies to their qubit the measurement with POVM:

Goal: convert |Wi on A,B,C to |EPRi on AB, BC, or AC
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2-qubit non-closure of LOCCN example:

Precise definition not needed for the understanding ... 
What’s needed: (1) can be approx (similar to FL06)

(2) why not in LOCC∞

J



2-qubit non-closure of LOCCN example:

Why

We found a mixed state tripartite entanglement monotone 
(nonincreasing under LOCC) which strictly decreases after  
any nontrivial local measurement, yet unchanged by the 
above state transformation.  

... a contradiction if J ∈ LOCC∞.    

J

JAB



Thus, when considering whether certain instrument can be 
"performed" in LOCC, we have to distinguish all 3 possible 
cases: 

- instrument can be performed in finitely many LOCC steps

- instrument cannot be performed in finitely many LOCC steps
but can approximated better and better 

- instrument cannot even be approximated by LOCC

even for the smallest possible remote system (2 qubits).  



Thm. For instruments (E1, E2, L, Ek) with fixed k, LOCCr is 
compact.

(i.e., infinitely many intermediate measurement outcomes 
gives no advantage.) 
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Plan:

• LOCC 101

• State discrimination by LOCC



Plan:

• LOCC 101

• State discrimination by LOCC

- can be performed in finitely many LOCC steps

- cannot be performed in finitely many LOCC steps
but can approximated better and better 

- cannot even be approximated by LOCC

many 
examples

no known
examples

many 
examples



Qn: can any LOCC operation discriminate the states as well as 
the best global operation?

The answer can depend on the measure of success.  

As a first step, focus on orthogonal sets S and ask whether 
LOCC achieves perfect discrimination.  

(bipartite case)
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LOCC state discrimination:

• Sometimes an LOCC op achieves global optimum:

e.g., Any 2 orthogonal pure states can be discriminated 
perfectly by LOCCN [Walgate, Short, Hardy, Vedral 00]

• More often, cl(LOCCN) ops can’t achieve global optimum:

e.g., a basis including at least one entangled state cannot 
be discriminated by cl(LOCCN). 

e.g., quantum data hiding states are nearly completely 
indistinguishable to parties performing cl(LOCCN).  In fact, 
there are sets of near orthogonal separable states that 
are indistinguishable by PPT operations).  

e.g., nonlocality without entanglement – sets of separable 
states that can be perfectly distinguishable by SEP but not 
by cl(LOCCN).
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Bennett, DiVincenzo, Fuchs, Mor, Rains, Shor, Smolin, Wootters 98

Constant deficit implies
cl(LOCCN) ⊂≠ SEP 

What product basis 
can be discriminated
perfectly by cl(LOCCN)? 

Improve the gap? 

What's the 
operational 
difference?

How 
different
are they? 

∃ measurements that cannot create entanglement but requires 

entanglement to perform 
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How was 
it proved?



In 1206.5822 & 1306.5992, we:

- replace original proof by a simpler and more systematic one 

- extend the result to more product bases

- demonstrate an operational difference between 
LOCC and SEP in perfect discrimination of product basis

- Understand the limitations of similar proof techniques



Plan:

• LOCC 101

• State discrimination by LOCC

- Nonlocality without entanglement 

- Operational difference between LOCC and SEP
for perfect discrimination of product bases

- when cl(LOCCN) gives no advantage over LOCCN



Kleinmann, Kampermann, Bruss 11: 

- A necessary condition for a set of states to be perfectly 
discriminated in cl(LOCCN) 

- A product basis can be perfectly discriminated in cl(LOCCN), 
iff it can be perfectly discriminated in LOCCN

When cl(LOCCN) gives no advantage over LOCCN

Also, there is an algorithm to determine [in time O((dAdB)3)] 
if a basis can be perfectly discriminated by LOCCN.  

[Rinaldis 04, Mancinska thesis 13]
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Kleinmann, Kampermann, Bruss 11: 

- A necessary condition for a set of states to be perfectly 
discriminated in cl(LOCCN) 

- A product basis can be perfectly discriminated in cl(LOCCN), 
iff it can be perfectly discriminated in LOCCN

When cl(LOCCN) gives no advantage over LOCCN

A small extension:

Consider any projective measurement M on a bipartite system, such 
that all but one POVM elements are tensor product operators, and the 
last one separable.  Then, M∈LOCCN iff  M∈cl(LOCCN). 

e.g., even if we don’t care to distinguish between the +  
states,  the (6) states still cannot be distinguished in 
cl(LOCCN).  A bit more work gives the same conclusion 
for discrimination of the +, −, and 11 states.  ±

±

±

±
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Plan:

• LOCC 101

• State discrimination by LOCC

- Nonlocality without entanglement reproof

- Operational difference between LOCC and SEP
for perfect discrimination of bipartite product bases

- when cl(LOCCN) gives no advantage over LOCCN



Interpolatability distinguishes LOCC from SEP 
for discrimination of bipartite product bases

Recall that if a measurement M is too informative, it can  
be performed in 2 steps: the first step extracts a controlled 
amount of information, and together, the 2 steps implements 
M.  We call the 2-step process an “interpolation” of M.

One can interpolate with respect to any reasonable measure 
of information gain (continuous, monotonic wrt coarse-
graining, etc). 

One can also interpolate any LOCC measurement, since it’s 
a composition of local measurements which can be 
interpolated locally.

Thm: Let M ∈ SEP is a measurement along a product basis.  
Then M can be interpolated as 2 separable measurements 
iff M has initial steps in LOCCN.   



Thm: Let M ∈ SEP is a measurement along a product basis.  
Then M can be interpolated as 2 separable measurements 
iff M has initial steps in LOCCN.   

Alice

Bobe.g.,

|3iA ⊗ U|iiB 

i = 0,1,2,3

|3i

|3i

V|iiA ⊗|3iB

i = 0,1,2



Recent development: Chitambar-Hsieh 13, Chitamber-Duan-Hsieh 13

• LOCC discrimination of the double trine states does not 
achieve global optimal discrimination (both in the min 
error setting and the unambiguous discrimination setting)

• Example of two 2-qubit states, mutually orthogonal 
and both separable, with ranks 1 and 2 respectively, 
that cannot be perfectly discriminated by LOCC. 

• Almost all sets of 3 pure states on 2-qubit cannot be 
discriminated optimally in LOCC (in min error setting), 
and some sets consist of 3 pure product states. 

... 

Thus providing a variety of new examples for nonlocality 
without entanglement. 
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Recent development: Fu-L-Mancinska 13

• Unextendable product basis (set of mutually orthogonal 
product states) in two-qutrits cannot be discriminated 
in cl(LOCC).  
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Open problems

1. Extend the Kleinmann, Kampermann, and Bruss 11 result 
to more general measurement, such as all separable 
projective measurements, or to the discrimination of 
incomplete orthogonal sets. 

2. Other operational difference between LOCC and SEP
(e.g, Koashi noted that LOCC measurement is a sequence of 
refinement of a measurement where Alice and Bob take turn)

3. Investigate the difference between LOCC and SEP for tasks 
other othan state discrimination
(e.g., random state distillation by Cui, Chitambar, Lo)

4. Investigate round complexity in LOCC

5. Better understanding of information gain implies disturbance.
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