Analytical and numerical modeling of precessing binary black holes

Harald Pfeiffer, CITA

CAP Congress, Sudbury, June 16-20, 2014

Simulations of Extreme Spacetimes (SXS) collaboration

Precessing compact object binaries

Spin **not** parallel to orbital angular momentum

Spin-spin and spin-orbit angular momentum exchange

Orbital plane & spins precess

BH-BH binary visualization by U of T ugrad Patrick Fraser

Motivation: LIGO

- Advanced LIGO nearly complete, first science run planned for 2015
- * LIGO talks tomorrow:
 - Gaby Gonzalez 10:30-11:15
 - Kipp Cannon 13:35-14:15
 - Riccardo Bassiri 14:15-14:45

Most likely GW source: Stellar mass compact object binaries

LIGO's many waveform needs

- Signal detection by <u>matched filtering</u>
 - Template banks covering parameter-space targeted in searches aligned spin, non-eccentric
- Constrain event-rates with non-detection
 - Some waveforms elsewhere in parameter space precessing systems; eccentric systems
- Parameter estimation (sky location!)
 - Accurate waveforms continuous in all parameters

$$M_1, M_2, \vec{S}_1, \vec{S}_2; e, \omega_0; i, \beta; RA, dec$$

current goal: quasi-circular

Compact object binary characteristics

- * BH-BH, BH-NS or NS-NS
- NS-NS merge at very high frequencies
 - inspiral waveforms sufficient
- BH-NS, BH-BH merge in LIGO's most sensitive frequency band
 - Require waveforms for last 100's of orbits, merger and ringdown

Tools for computing waveforms

- Early inspiral
 - Post-Newtonian
 - Perturbative expansion in v/c

- Late inspiral+merger
 - Numerical relativity
 - State of the art:
 - 30 orbits,
 - 100,000 CPU-hours

- Ringdown
 - Perturbation theory
 - Numerical relativity

Tools for computing waveforms

Simple chirp waveform of an equal mass, non-precessing binary

Early inspiral

- Post-Newtonian
- Perturbative expansion in v/c

Late inspiral+merger

- Numerical relativity
- State of the art:
 - 30 orbits,
 - 100,000 CPU-hours

Ringdown

- Perturbation theory
- Numerical relativity

Precessing BH-BH

- Modulated amplitude
- Temporal harmonics
- Dependence on inclination
- Modified phasing

Spectral Einstein Code (SpEC)

Multi-domain spectral adaptive mesh refinement

BH excision

High efficiency and accuracy enables very long simulations

www.black-holes.org/SpEC.html

e.g. HP ea 04, Scheel ea 06, Boyle ea 07, Lovelace ea 08, Hemberger ea 13, Mroue ea 13, Szilagyi 14

SXS numerical waveform catalog

A. Mroue, M.Scheel, B.Szilagyi, HP et al, 1304.6077, PRL 2013 Data publicly available www.black-holes.org/waveforms

SXS catalog: parameter space coverage

Investigate precession dynamics

Numerical simulations & post-Newtonian predictions

Ossokine ea, in prep

Numerics (red) agree w/ post-Newtonian (black)

Ossokine ea, in prep

Convergence of precessing PN

orbital plane precession

quick, monotonic convergence

Ossokine ea, in prep

orbital phase slow, erratic convergence

As bad as non-precessing PN requires many-orbit NR & careful modeling

Analytical waveform modeling

- Effective one body
 - Buonanno, Damour 1999; many papers since
 - Effective Hamiltonian to capture conservative dynamics

$$H = \mu \sqrt{p_r^2 + A(r) \left[1 + \frac{p_r^2}{r^2} + 2(4 - 3\nu)\nu \frac{p_r^4}{r^2} \right]}, \qquad A(r) = \sum_{k=0}^4 \frac{a_k(\nu)}{r^k} + \frac{a_5(\nu)}{r^5}$$

Radiation reaction terms

$$\frac{dp_r}{dt} = -\frac{\partial H}{\partial p_r} + \frac{\mathbf{a}_{RR}^r}{r^2 \Omega} \widehat{\mathcal{F}}_{\phi}$$

$$\frac{dp_{\varphi}}{dt} = 0 - \frac{v_{\Omega}^3}{\nu V_{\phi}^6} F_4^4(V_{\phi}; \nu, v_{\text{pole}}), \quad \text{using 4-PN term } \mathcal{F}_{8,\nu=0} + \nu A_8$$

- Attach BH ringdown modes
- ★ Fit free parameters to NR simulations

EOB progress (I)

Non-spinning case: **Error-estimate** of EOB fit

EOB progress (2)

Aligned-spin case: Spin-magnitudes up to extremal

FIG. 1. Unfaithfulness of (2,2) EOB waveforms for *all* the 38 non-precessing BH binaries in the SXS catalog. Only a few selected cases are labeled in the legend.

Taracchini ea, 1311.2544

EOB progress (3)

- Precessing case: First generic, precessing EOB models
 - Idea (Buonanno ea 2005, Hannam ea 1308.3271)
 - Start with aligned-spin waveforms

Apply time-dependent rotation to account for orientation change of

orbital plane

Pan ea, 1307.6232

Taracchini ea, 1311.2544

Mixed BH-NS binaries

- ❖ For high mass-ratio, low-spin: BH-NS ≡ BH=BH
 - NS eaten by BH in one piece, no disruption

Foucart ea, 1311.2544

Highly precessing BH-BH

- q=9.5, Spin 0.5, mimicks a 13Msun + 1.4Msun BH-NS
- orbital plane flips over

Ossokine, HP & SXS

One system, many emission directions

change inclination

orbital pha

change

S. Ossokine, HP + SXS

Summary

- Advanced LIGO on track for searches in 2015
- Vast progress in waveform modeling
 - 100's of NR simulations
 - first precessing BBH models
 - complete knowledge of precessing BH-BH appears feasible

Future work

Validation everywhere in spin-space

- mass-ratio≥4 w/ spins
 - PN least reliable in that region
- BH-NS with NS disruption
- eccentric systems

Chu ea, in prep