The Unruh Effect in a Cavity

To the Continuum and Beyond

Wilson Brenna June 18, 2014

The Unruh Effect

$$T = \frac{a}{2\pi}$$

The Unruh Effect

$$T = \frac{a}{2\pi}$$

The Unruh Effect

$$T \stackrel{?}{=} \frac{a}{2\pi}$$

Outline

- 1. Review: The Unruh-DeWitt Detector in 2D and Gaussian Quantum Detectors
- 2. Temperature and Acceleration Plots
 a. Perturbative
 b. Non-Perturbative
- 3. Conclusion

1. Review of UdW and GQI Detectors

I. Review of UdW and GQI Detectors

Notation

1. Review of UdW and GQI Detectors

UD (Minkowski) Taussian Non-Perturbative" "Perturbative" 1> a⁺↑ p: Density Matrix J: Covariance Matrix (State) $\hat{p} = \sum_{i} P_i |\Psi_i \times \Psi_i|$

I. Review of UdW and GQI Detectors

$$\dot{\mathcal{F}}_{\Delta t}(\Omega) = \int_{-\tau+\tau_0}^{\tau-\tau_0} ds \cdot e^{-i\Omega s} \frac{1}{2\pi} \int \frac{dk}{2\omega} e^{-i\omega t(s) + ik(x(s)-1)}$$

$$\dot{\mathcal{F}}_{\infty}(\Omega) = \int_{-\infty}^{\infty} ds \cdot e^{-i\Omega s - \frac{|s|}{\kappa}} \frac{1}{2\pi} \int \frac{dk}{2\omega} e^{-i\omega\alpha \sinh(s/\alpha) + ik(\alpha \cosh(s/\alpha) - 1)}$$

After some mathematical tricks, this evaluates to

$$\dot{\mathcal{F}}_{\infty} = \frac{1}{\Omega\left(e^{2\pi\alpha\Omega} - 1\right)} \quad \xrightarrow{\text{Boltzmann}}_{\text{Dist.}} \text{ at } \mathcal{T} = \frac{1}{2\pi\alpha} = \frac{\alpha}{2\pi}$$

We numerically evaluate the above integrals, after adding UV and IR cutoffs:

$$k = \frac{2\pi n}{L} \quad n = [1..N]$$

1. Review of UdW and GQI Detectors

$$\boldsymbol{\sigma}_{d} = \begin{pmatrix} \langle \hat{q}_{d}^{2} \rangle & \langle \hat{q}_{d} \hat{p}_{d} + \hat{p}_{d} \hat{q}_{d} \rangle \\ \langle \hat{q}_{d} \hat{p}_{d} + \hat{p}_{d} \hat{q}_{d} \rangle & \langle \hat{p}_{d}^{2} \rangle \end{pmatrix}$$

$$\hat{H} = \Omega_d \hat{a}_d^{\dagger} \hat{a}_d + \frac{dt}{d\tau} \sum_n \omega_n \hat{a}_n^{\dagger} \hat{a}_n + \hat{H}_I(\tau)$$
$$\hat{H}_I = \lambda(\tau) \cdot \hat{m} \cdot \hat{\phi}[x(\tau)]$$

$$\hat{H} = \hat{\boldsymbol{x}}^T \mathbb{F}(\tau) \hat{\boldsymbol{x}}$$
$$\hat{\boldsymbol{x}}^T = (\hat{q}_d, \hat{p}_d, \hat{q}_1, \hat{p}_1, \dots, \hat{q}_N, \hat{p}_N)$$

States are Gaussian, i.e. they can be squeezed, shifted, thermal, etc. Quadratic Hamiltonians preserve Gaussianity.

> Brown, Martín-Martínez, Menicucci, Mann PRD 87, 2013; arXiv:1212.1973

I. Review of UdW and GQI Detectors

• Symplectic form
$$\Omega_{ij}$$
 from $[\hat{a}_i, \hat{a}_j] = \Omega_{ij} = \begin{pmatrix} \circ & i \\ -1 & \circ & i \\ 0 & -1 & \circ \\ 0 & -1 & \circ \end{pmatrix}^T$
where $\hat{a} \equiv \left(\hat{a}_d, \hat{a}_d^{\dagger}, \hat{a}_1, \hat{a}_1^{\dagger}, \hat{a}_2, \hat{a}_2^{\dagger}, \dots, \hat{a}_N^{\dagger}\right)^T$

 \mathbf{N}

• Gaussian states and quadratic Hamiltonian⁴

$$\sigma(t) = S(t)\sigma_0 S(t)^T \qquad (Unitary Evolution)^2$$

$$\frac{d}{dt}S(t) = \Omega F^{sym}(t) \cdot S(t)$$

 F^{sym} : symmetrization of the Hamiltonian in matrix form, $\mathbb{F}(t)$

Numerically evolve the first order DE from initial conditions!

1. Review of UdW and GQI Detectors

1. Review of UdW and GQI Detectors

Comparing Boundary Conditions

2. Temperature and Acceleration Plotsa. Perturbative (Unruh-DeWitt)

2. Temperature and Acceleration Plots

 $L = 4\pi \Omega = 4$

2. Temperature and Acceleration Plots L= 4π Ω= 4 a. Perturbative

2. Temperature and Acceleration Plots

b. Non-Perturbative (Gaussian Quantum Detector)

Plot of Temperature versus Acceleration

Conclusion

Taking the cavity to infinity will remain difficult. Does a detector get hot when you accelerate it?

Conclusion

Taking the cavity to infinity will remain difficult. Does a detector get hot when you accelerate it?

Not always! Detectors can cool down as we accelerate them.

The negative linear temperature vs acceleration behaviour?

It's a non-equilibrium effect! Appears to be due to a finitely sized cavity/trajectory!

Conclusion

Taking the cavity to infinity will remain difficult. Does a detector get hot when you accelerate it?

Not always! Detectors can cool down as we accelerate them.

The negative linear temperature vs acceleration behaviour?

It's a non-equilibrium effect! Appears to be due to a finitely sized cavity/trajectory!

Anti-Unruh...?

Questions?

AT increases too, to Maintain AT = 120

Plot of Temperature versus Width of Switching Function

2. Temperature and Acceleration Plots

b. Non-Perturbative

Plot of Temperature versus Tau

Thermality versus Coupling Constant (λ)

Increasing Coupling

Slope of Temperature

Increasing Length

Slope of Temperature

Thermality versus Cavity Length

Thermalization (L = 96 pi)

Slope of Temperature

Thermality versus Number of Modes

Thermality Ratio (r^2/δ)

Temperature Slope vs Cavity Length (L)

 $\Omega = 4 \text{ and } L = 0.0005$

Thermality versus Detector Gap (Ω)

Thermality Ratio (r²/8)