Coupled-channel vibrational-model studies of nucleon scattering from oxygen isotopes and the corresponding mirror systems

Juris P. <u>Svenne</u>, University of Manitoba, and collaborators

Outline for MCAS

The MCAS formulation, brief review K. Amos, *et al*, Nuclear Physics, **A728** (2003) 65

Mirror nuclei method

Proof of concept:

Calculations and experiments for ¹⁵F

Application of MCAS method to ¹⁶O The vibrational model

MCAS:

Multichannel Algebraic Scattering Formalism

- 1. Discretization of the coupled-channel equations by separable expansion of the channel interactions.
- 2. Pauli principle inclusion by use of orthogonalizing pseudo-potentials.
- 3. Fast, effective search procedure for resonances and bound states.
- 4. Adaptive mesh size for plotting cross sections through the resonances.

Why mirror nuclei

- Two nuclei are called "mirror nuclei" if one changes into the other by interchanging all protons and neutrons
- Example: ¹⁴C, the isotope of carbon used in carbon dating (half-life ≅ 5700 years) has as its mirror ¹⁴O, a short-lived isotope of oxygen (half life = 70.6 sec)
- Nuclei with a proton excess tend to be less stable than those with a neutron excess
- Current MCAS role: analyze bound and resonant spectra to support and interpret experimental work

The proton-unstable nucleus: ¹⁵F

- The neutron-¹²C: a success story for bound and resonant states from MCAS.
- MCAS has been demonstrated to have predictive power.
- We extend to this to n+¹⁴C and p+¹⁴O, a mirror pair, to get the structure of ¹⁵F.
- See Canton, *et* al, PRL 96, 072502 (2006); Mukha, *et al*, PRC 79, 061301 (2009).

¹⁵F: a success story

17/9/2012

¹⁵F: experimental verification

CAP 16/6/2014

Nucleon – ¹⁶O scattering

The mirror concept cannot be used to get information on ¹⁶O, since it is its own mirror.

However, energy levels of ${}^{16}O$, as well as those of ${}^{17}O$, the compound system of $n+{}^{16}O$, are well known.

So, we carry out MCAS calculations on n+¹⁶O scattering, to get accurate fits to the spectrum, including resonant states, of ¹⁷O. From these we extract neutron scattering "data".

Using the same parameters, but adding a Coulomb force, we obtain a spectrum for ¹⁷F, as well as proton scattering cross sections. ¹⁷F is the mirror system to ¹⁷O.

The next slides show a sample of results obtained to date.

CAP 16/6/2014

Difficulties with MCAS for ¹⁶O

- ¹⁶O is a doubly-magic nucleus: 8 protons in the $Os_{1/2}$, $Op_{3/2}$ and $Op_{1/2}$ states: filled s and p shells.
- That means ¹⁶O is spherical in its ground state, which causes difficulties for us, since we need the assumption of a deformed target nucleus to which the incoming neutron or proton is coupled. The rotational model does not work well with a spherical ground state.
- So, instead, we use the vibrational model, for the first time with MCAS. Now the deformation is dynamic, and coupling to the projectile works better.
- Most results shown here are obtained with the vibrational model. This is a more complicated model, and obtaining good results has required much work.

The parameters

MeV	parity -	parity +	geometry	value	
V ₀	- 47.5	- 50.5	R ₀	3.15 fm	
V_{LL}	2.55	0.0	а	0.65 fm	
V_{Ls}	6.9	7.2	β ₂	0.21	
V_{ss}	2.5	- 2.0	β ₃	0.42	
l ^π n	E _n (MeV)	0s _{1/2}	0p _{3/2}	0p _{1/2}	0d _{5/2}
0+ ₁	0.0	106	106	106	0.0
0+2	6.049	106	106	0.0	0.0
3-1	6.13	106	106	5.0	0.0
2+ ₁	6.92	106	106	0.0	0.0
1-1	7.12	106	106	5.0	1.0
					CAP

 $\frac{16/6/2}{0145.0} 10$

Spectra of ¹⁷O and ¹⁷F

CAP 16/6/2014

The 10 lowest-E states

J۳	¹⁷ 0 _{exp}	Γ _{exp}	E _{mcas}	Γ/2	¹⁷ F _{exp}	Г _{ехр}	E _{mcas}	Γ/2
(5/2)+	-4.1436	—	-4.1436	—	-0.6005	—	-1.1047	—
(1/2)+	-3.2729	—	-3.4099	—	-0.1052	—	-0.6678	—
(1/2)-	-1.0882	—	-0.9713	—	2.5035	19	2.2485	2.8(10)-5
(5/2)-	-0.3008	—	-0.6719	—	3.2565	1.5	2.5644	4.9(10)-6
(3/2)–	0.4102	40	0.2474	0.0003	4.0395	225	3.3688	0.0028
(3/2)+	0.9412	96	0.9814	0.060	4.3995	1530	3.7763	0.4530
(9/2)-	1.0722	< 0.1	2.1920	5.8(10)-11	4.6195	-	5.1331	0.0151
(3/2)-	1.2356	28	2.7706	0.0004	4.8875	68	5.5840	1.2(10)-4
(7/2)-	1.5537	3.4	1.2546	9.1(10)-5	5.0715	40	4.0854	6.3(10)-5
(5/2)-	1.5892	<1	3.1885	0.0001	5.0815	< 0.6	6.0667	0.00195

A figure of merit

A figure of merit is the root-mean-square deviation between experimental and MCAS calculated energy levels:

$$\mu_{N}^{i} = \sqrt{\frac{\sum_{n=1}^{N} [E_{\exp}(n) - E_{i}(n)]^{2}}{N}}$$

For the results shown in slide 11, for ¹⁷O and 30 levels, $\mu = 1.2058$, for 20 levels, $\mu = 1.1265$. For ¹⁷F these numbers are 0.9198 and 0.9296, respectively.

CAP 16/6/2014

n+¹⁶O total scattering cross section

CAP 16/6/2014

n+¹⁶O scattering, linear scale

CAP 16/6/2014

Rotational model results

- Despite the closed-shell nature of ¹⁶O, we have also calculated MCAS results using the same parameters, but with the rotational model, after having obtained the "best" results from the vibrational model already shown.
- The rotational-model results resemble the vibrational ones somewhat, but the levels appear to be more sparse, and the comparison to data is less favourable than that obtained from the vibrational model.

Spectra from the rotational model

MCAS results with vibration and rotation models

→PRELIMINARY ← Total elastic cross section of n +¹⁸O

Concluding remarks

Our past work on ¹⁵F has shown that the MCAS method has predictive power.

Work on neutron-¹⁶Oxygen scattering is in progress. Preliminary n+¹⁶O results look promising.

Proton-¹⁶Oxygen scattering calculations are also under way, and preliminary results have been reported.

We also have work in progress on $n + {}^{18}O$ scattering.

MCAS Collaboration

- Ken Amos and Dirk van der Knijff, School of Physics, University of Melbourne, Victoria 3010, Australia
- Luciano Canton, Paul R. Fraser, and G. Pisent, Istituto Nazionale di Fisica Nucléare, Sezione di Padova, Padova I-35131, Italy
- Steven Karataglidis, Department of Physics, University of Johannesburg, P.O. Box 524 Auckland Park, 2006, South Africa
- JPS and Damodar K.C., M.Sc. Student, University of Manitoba, Winnipeg, MB

References

- 1. G. Pisent and J.P. Svenne, Phys. Rev. C 51 (1995) 3211
- 2. K. Amos, *et al*, Nucl. Phys. **A728** (2003) 65-95
- 3. L. Canton, et al, Phys. Rev. Lett. 94 (2005) 122503
- 4. J.P. Svenne, et al, Phys. Rev. C 73 (2006) 027601
- 5. L. Canton, et al, Phys. Rev. Lett. 96 (2006) 072502
- 6. I. Mukha, et al, Phys. Rev. C 79, 061301 (2009)
- 7. P. Fraser, et al, Phys. Rev. Lett. 101 (2008) 24501
- 8. L. Canton, *et al*, Phys. Rev. C 83 (2011) 047603
- 9. K. Amos, et al, Nucl. Phys. A912 (2013) 7-17