High Resolution Depth Profiling of Ti Oxidation

M. Brocklebank, J.J. Noel, L.V. Goncharova* Department of Physics and Astronomy, University of Western Ontario *Department of Chemistry, University of Western Ontario

June 12, 2014

Motivations

- Ti is widely used in industry and research
- Oxidation processes:
 - -Thermal: lack of precise control \rightarrow > 100 nm
 - -Electrochemical (time vs voltage):
 - high quality ultra-thin films (~10 nm)
- Corrosion specific to Ti
- General principles of electrochemical oxidation:
 - -Dominant migrating species
 - -Exchange reactions
 - -Transport mechanisms
- Stopping power for H⁺ in Ti and TiO₂ ultra-thin films

Matsumoto et. al. Science, 2001. Vol. 291, p854-856

Procedure

- Ti films deposition on Si(001) by sputtering (with J. Noel, Chemistry, UWO)
- Isotopic labeling:
 - Ti sample is exposed to isotopic (¹⁸O) water
 - Ultra thin TiO₂ Film
 - TiO₂/Ti/Si(001) electrochemically oxidized in H₂¹⁶O water
- Medium Energy Ion Scattering (MEIS):
 - Analyze surface layers at sub-nanometer depths
 - Simulation of depth profiles of isotopes
- Other analytic techniques:
 - X-ray Photoelectron Spectroscopy (XPS): Ti oxidation state
 - Nuclear Reaction Analysis (NRA): Absolute ¹⁸O conc., potential depth profiling

Two Major Oxygen Transport Mechanisms

Concentration vs Depth

Ion Scattering Yield vs Energy

Rutherford Backscattering Spectrometry (RBS)

and Depth Profiles

- Incident beam of mono-energetic ions
- Scattered off target → element/isotope sensitive
- Know M_{1,E_0} and θ (detector placement)
- Measure $E_1 \rightarrow determine M_2$

$$K = \frac{E_1}{E_o} = \left[\frac{\left(M_2^2 - M_1^2 \sin^2 \theta\right)^{1/2} + M_1 \cos \theta}{M_1 + M_2}\right]^2$$

Medium Energy Ion Scattering (MEIS)

Identical to RBS, but:

- Torrodial Electrostatic Analyizer (TEA):
 - -Scattered Ion intensity as a function of scattering angle, at fixed energy
- Channeling incident beam and movable detector positioned to blocking direction: "Double Alignment"

TEA and Double Alignment

Tromp et. al. Review of Scientific Instruments 1991, Vol. 62, p2679

	RBS	MEIS
lon energy	~2 MeV	~ 100 keV
Detector resolution	~ 15 keV	~0.15 keV
Depth resolution	~ 100 Å	~ 3 Å

Channeling and blocking in the <111> directions for double alignment.

Features of MEIS Spectra: Ti Features

9

Features of MEIS Spectra: O Features

From Simulations:

Areal density (10 ¹⁵ atoms/c m ²)	0 V	0.5 V	1.0 V	1.5 V
Ti	103	85	83	81
TiO _x	37	46	55	56
¹⁶ O	11.4	19	23	25.5
¹⁸ O	13	12	14	12

X-Ray Photoelectron Spectroscopy (XPS)

Figure: XPS data of Ti used to justify use of **TiO**₂ in simulation. More accurate simulations can take into account different oxidation states

Nuclear Reaction Analysis (NRA): ¹⁸O (p, α) ¹⁵N

Conclusions

- Oxide growth increases as function of voltage
- Increasing incorporation of ¹⁶O towards Ti/Oxide interface:
 Implies O is the migrating species and not Ti
- Exchange between ¹⁶O and ¹⁸O minimal
 Except possibly at oxide surface

Future work

- Oxidation kinetics: with V=const, vary time
- Explore alternative ¹⁸O and ¹⁶O methods of depth profiling. Particularly the NRA 151keV resonance. Hopefully this matches MEIS.
- Examine importance of morphology

Direct oxygen transport (no Oexchange) to interface

