Testing Fundamental Symmetries with the Next Generation Ultracold Neutron Source at TRIUMF

Russell Mammei

The University of Winnipeg

DISCRETE SYMMETRIES

Continuous Symmetries:

- Translation in space \rightarrow momentum conservation
- Translation in time \rightarrow energy conservation
- Rotation \rightarrow angular momentum conservation

Discrete Symmetries:

- Spatial Inversion (P) \rightarrow P-invariance (parity)
- Charge Conjugation (C) \rightarrow C-invariance
- Time reversal $(T) \rightarrow T$ -invariance

But Wait...

- Parity violation discovered in 1950s
- Charge parity (CP) violation discovered in 1960s
 - kaon sector (1964, 1990s)
 - B meson sector (2000's) See. D. London's talk Thursday

A neutron electric dipole moment would be a violation of both parity and time reversal invariance

CPT still thought to be not violated ("good symmetry")

parity (P) violation in β -decay (Madam Wu, 1957)

THE BIG QUESTIONS

1. Baryon asymmetry of the universe

Sakarov Criteria EW Baryogenesis (Sphalerons) Departure from thermal equilibrium CP violation –need more **nEDM would help**

- 2. Number of quark flavors/generations (CKM unitarity) Neutron Decay
- 3. Predictions of elemental abundances in the universe
- 4. Testing Short-range Gravitation Interactions

UCN EXPERIMENTS

ULTRACOLD NEUTRONS (UCN)

Neutrons moving so slowly that they bounce off surfaces and can be bottled.

v < 8 m/s = 30 km/hr KE < 300 neV $\lambda > 50 nm$

Interactions

• Strong interaction

long wavelength samples over many atoms in materials \Rightarrow average Fermi potential, total reflection

• **Electromagnetic Interaction** $V_m = -\mu \cdot B = \pm 60 \text{ neV per Tesla}$

We can make beam beam of 100% polarized UCN !!!

- **Gravity** $V_g = mgh \approx 100 \text{ neV per meter}$
- Weak Interaction

 β -decay $n \rightarrow p + e + \bar{\nu}_e$, 728 keV liftime ~15min

Can store/transport UCN on times comparable to lifetime

HOW DO WE MAKE UCN AT TRIUMF?

- Spallation Free the neutrons from W target
- Moderation —Cool the neutrons in D_2/D_20
- Conversion Really cool the neutrons in He-II

MeV neutrons

(ultra-)cold neutrons

Spallation target, thermal and cold moderator and He-II converter

Technology developed at RCNP Osaka

480 MeV protons

7

TRIUMF UCN HISTORY SO FAR

- 2006: UCN project was first introduced into the TRIUMF 5Y planning
- 2007: International Workshop UCN sources and Experiments at TRIUMF
- 2008: Positive review by TRIUMF's Experiments Evaluation Committee (EEC)
- 2009: CFI-NIF Award for UCN Source
- 2010: International Review endorses UCN program strongly
- 2011: MoU between Uwpg, KEK, RCNP and TRIUMF was signed...
 - to build a He-II spallation source at KEK/RCNP and move it to TRIUMF
 - to develop and conduct a neutron EDM experiment
 - to build a dedicated beam line and target at TRIUMF

2011-2013: development of beam line in Meson hall

- Kicker, septum, bender, focusing elements, diagnostics, target
- Shielding upgrade
- clean-up of Meson hall
- 2012 Two new hires in Winnipeg that work on UCN
- 2013: TRIUMF hires are research scientist for UCN

2014: First substantial installations occurred this spring Seeking CFI-IF for nEDM experiment, 2nd experiment port, & my coating facility

UCN FACILITY AT TRIUMF: MESON HALL

<u>BEANPLINES AND</u> Beamline (EDM, th, gravity...) removed <u>EXPERIME PERE</u> otdeffected and facility (Ref.) When space needed FACIELIES (PF) Fotoemarins appendix to the first of the first

INSTALLATION SCHEDULE

2014 INSTALLATION

Primary goals for 2014 installation met

- Reconfigure Cyclotron shielding (Shield-Plug)
- Septum subsystem (1AM5: vacuum vessel only)
- Rough-in (trench) services
- BL1U \rightarrow UCN-Dipole, girder, reconfiguration of BL1A

"Best Efforts" goals 90-95 %

- Rough-in (non-trench) services
- Complete services
- BL1U girder components

SEARCH FOR THE NEUTRON ELECTRIC DIPOLE MOMENT

1E-32

Model

nEDM EXPERIMENTAL SITES

RAMSEY'S METHOD

- 1. prepare a sample of polarized neutrons 1. 2. make a $\pi/2$ spin flip ("start clock") 3. allow free spin precession in (anti-)parallel **B** and **E** static fields 2. 4. make a $\pi/2$ spin flip ("stop clock") 5. analyze direction of neutron spin 3.
- look at energy (frequency) shift under Electric field inversion:

$$\Delta \varepsilon = h \left| \Delta v \right| = 4 E d_n$$

THE EXPERIMENT

Look at energy (frequency) shift under E field inversion: $\Delta \varepsilon = h |\Delta v| = 4Ed_n$

ERROR BUDGET

Best nEDM limit so far is 2.9 ·10⁻²⁶ e·cm (ILL/RAL/SUSSEX)

EDM statistical sensitivity:

 $\sigma_{\rm d} = \frac{\hbar}{2\alpha ET\sqrt{N}} \begin{array}{l} \alpha: \text{ visibility} \\ \text{E: electric field} \\ \text{T: observation time} \\ \text{N: \# of neutrons} \end{array}$

ultra-cold neutrons are:

...totally reflected*

⇒ long observation time T ...enough from our new source ⇒ sufficient statistics \sqrt{N} ...polarizable to 100% ⇒ good visibility α

Expect in one year $\sigma_{\rm d} \sim 10^{-27} \ e \cdot cm$

*by suitable materials under all angles of incidence

Systematics Errors are Key

Biggest Error due in-homogeneities in the magnetic field (GPE effect)

Requirements for 10⁻²⁷ e•cm

- $B_0 \sim 1 \ \mu T$
- Homogeneity < nT/m ⇒ < 100 pT across the cell
- Stability controlled to < pT

CANADIAN EDM R&D

CONCLUSIONS

- Good physics can be done with neutrons
 - Search for new sector of CP violation (nEDM)
 - Search for beyond standard model interactions (via neutron decay)
- □ TRIUMF will have the best UCN source in the world
 - Proton beamline installation started this year
 - On track to do commissioning in 2016
 - first measurements in 2017
- nEDM at TRIUMF
 - Subsystem R&D well underway
 - Seeking CFI-IF
 - High discovery potential of a nEDM

UCN CANADIAN COLLABORATION

T. Adachi¹, <u>E. Altiere²</u>, <u>T. Andalib^{3,4}</u>, C. Bidinosti³, J. Birchall⁴, C. Davis⁵, <u>F. Doresty⁴</u>,
W. Falk⁴, M. Gericke⁴, K. Hatanaka⁶, B. Jamieson³, S.C. Jeong¹, D. Jones², K. Katsika⁵,
S. Kawasaki¹, A. Konaka⁵, E. Korkmaz⁷, <u>M. Lang^{3,4}</u>, L. Lee^{4,5}, K. Madison², J. Mammei⁴,
R. Mammei³, J.W. Martin³, Y. Masuda¹, R. Matsumiya⁶, K. Matsuta⁸, M. Mihara⁸,
C.A. Miller⁵, <u>E. Miller²</u>, K. Mishima¹⁰, T. Momose², W.D. Ramsay⁵, S.A. Page⁴,
R. Picker⁵, E. Pierre^{8,5}, <u>L. Rebenitsch^{3,4}</u>, J. Sonier⁹, I. Tanihata^{6,10}, W.T.H. van Oers^{4,5},
Y. Watanabe¹, and <u>J. Weinands²</u>

¹*KEK,* ²*UBC,* ³*Winnipeg,* ⁴*Manitoba,* ⁵*TRIUMF,* ⁶*RCNP Osaka,* ⁷*UNBC,* ⁸*Osaka,* ⁹*SFU,* ¹⁰*Beihan*

BACKUP SLIDES

EDM CELL AND ELECTRIC FIELD

- dielectric strength of Xe at 10⁻³ mbar unknown
- HV test setup at TRIUMF
- 50x100 mm cylindrical test cell
- field strength goal > 10 kV/cm
- test of different cell materials
- commissioned 8/2013

HV/EDM cell mock-up at TRIUMF

HV setup at TRIMF

Parameter s of Big Bang Nucleosynthesis

- the particle data group (PDG) reviews all major particle properties annually http://pdg.lbl.gov/
- PDG "world" averages of the neutron lifetime for the last 50 years

\Rightarrow **PENeLOPE**

(Precision Experiment on the Neutron Lifetime Operating with Proton Extraction)

- Combination of magnetic storage of ultra-cold neutrons and in-situ proton detection
- Large volume
- Blind analysis
- Many knobs to turn to investigate systematic effects

Transport and Storage of UCN

Need dedicated facility

Be

250

Fermi Potential (neV) A. Serebrov NIMA, 440 (3):717-21 (2000) A. Serebrov PLA, 313 (5-6):373-79 (2003)

300

Makela/Young, Rios

350

UCN SOURCE FULLY SHIELDED

a lot of steel and concrete...

Angular Correlations (directional distribution shown)

$$\frac{dW}{d\Omega_e d\Omega_v dE_e} \propto p_e E_e (E_0 - E_e)^2 \left[1 + a \frac{\vec{p}_e \cdot \vec{p}_v}{E_e E_v} + b \frac{m_e}{E_e} + \left\langle \frac{\vec{J}_n}{J_n} \right\rangle \cdot \left(A \frac{\vec{p}_e}{E_e} + B \frac{\vec{p}_v}{E_v} + D \frac{\vec{p}_e \times \vec{p}_v}{E_e E_v} \right) \right]$$

Big Bang Nucleosythtniss –neutron lifetime matters

Parameter s of Big Bang Nucleosynthesis $Y_{P} = 0.228 + 0.023 \log_{10} + 0.012 N_{\nu} + 0.018 (\tau_{n} - 10.28)$ $\stackrel{(n, n)_{C}}{\xrightarrow{f_{O}}} \stackrel{(n, n)_{C}}{$

25

← → C 🗋 neutron.physics.ncsu.edu/LifetimeWorkshop/talks/Marciano.pdf

Conclusion

- <u>Current Exps & Th:</u> |V_{ud}|²+|V_{us}|²+|V_{ub}|²=0.9999(4)_{Vud}(4)_{Vus} Great Unitarity Test & Sucess → No New Physics! Nuclear Isospin Breaking? Needs Resolution Radiative Corrections Stable (Unchallenged!)
- 2) <u>Neutron Decay:</u> $|V_{ud}| = [4908.7(1.9)s/\tau_n(1+3g_A^2)]^{1/2}$ <u>clean & precise</u> Neutron Lifetime Controversy (6 σ discrepancies) 2010 $\tau_n^{PDG} = 885.7(8)s$ vs $\tau_n = 878.5(8)s$ Needs Resolution g_A larger? Perkeo Ave. 1.2755(13) vs 2010 $g_A^{PDG} = 1.2695(29)$ Larger g_A & smaller $\tau_n \rightarrow$ Unitarity, solar neutrino flux, primordial nuclear abundances, proton spin, Goldberger-Treiman/Muon Capture, Bjorken Sum Rule, lattice calculation benchmark...

 V_{ud} , τ_n and g_A must be precisely determined!

📀 📜 🖸 🔇 🧔 📴 🞹 🖊 🖾 🥥 📑 👳 🖂 🕫

28%) 🕞 🔺 🕨 🛱 🌵 🔐 🕹

ã (

Gravity

Molecular rotor UCN inelastic scattering reflectormeter get pictures

Neutron Decay (n→pev) & V_{ud}

V_{ud} ²= <u>4908.7(1.9)sec</u> Master Relation τ_n(1+3g₄²) Measure τ_n and $g_A = G_A/G_V$ (decay asymmetries) 2008 PDG τ_n^{ave} =885.7(8)sec, g_A^{ave} =1.2695(29) $\rightarrow |V_{ud}|^{ave} = 0.9746(4)_{\tau n}(18)_{qA}(2)_{RC}$ reasonable but ... 2012 τ_n^{PDG}≈ <u>880.1(1.1)</u>sec? & g_A≈<u>1.2755(13)</u> Perkeo II $\rightarrow |V_{ud}| = 0.9739(6)_{\tau n}(8)_{\alpha A}(2)_{RC}$ **Agrees with superallowed!** $0^+ \rightarrow 0^+$ Nuclear Beta V_{ud}=0.97425(22) (Are $\tau_n \& g_A$ both shifting?) History g_{A} =1.18→1.23→1.25→1.26→1.27→1.275? Many New $\tau_n \& g_{\Delta}$ Experiments Planned

Non-zero nEDM implies violation of time-reversal symmetry (T).

In QFT, this is equivalent to CP violation. (CPT=1)

The nEDM is sensitive to sources of CP violation:

- within the Standard Model, via θ_{QCD} nEDM $\approx 10^{-32}$ ecm
- beyond the Standard Model, e.g. as required by Electroweak Baryogenesis in order to generate the baryon asymmetry of the universe

Where is all the antimatter

Sakharov Conditions: (A.D. Sakharov, JETP Lett. 5, 24-27, 1967)

(1)Baryon number violation (may imply proton decay)

- Baryon: particle made out of 3 quarks (proton, neutron, lambda...)
- proton is lightest baryon (uud), could only decay to leptons or mesons (2 quarks)

(2)Departure from thermal equilibrium

- Phase transitions
- Expansion of the Universe (Inflation)

(3)Time reversal violation (\Rightarrow CP violation)

- not enough in Standard Model \Rightarrow electric dipole moment would help

MONTE CARLO SIMULATION: ONE EXAMPLE

15.03.2012

RIVMF Monte Carlo Simulation: Reproducing RCNP experiment

UCN FACILITY AT TRIUMF 32

• second UCN experiment port very valuable

- short term: for beam development, detector and guide tests
- long term: for experiments besides EDM: lifetime, neutron decay, charge, gravity
- included in our upcoming CFI request
- big step towards a real user facility
- will attract UCN physicists from around the world

PHYSICS WITH SLOW NEUTRONS

