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The Thermoelectric eftect

* Thermoelectric effect enables direct and
reversible conversion between thermal and
electrical energy, and provides a pathway for
power generation from waste heat.

* Functional relationships between thermal and
electrical properties are expressible in terms of
the Lambert W functions and polylogarithms.




* Efficiency of thermoelectric material - measured by
dimensionless figure of merit 62 (aka ZT) - ZT
governs the Carnot efficiency for heat conversion.

ZT = (S%0 /K)T
S: Seebeck coefficient, o: electrical conductivity,
K: Thermal conductivity, T: Absolute Temperature

To be competitive with other conventional devices,
ZT should be >3

Challenge:

Achieve the maximum ZT in TE materials.

Improved analytic calculations and experiments -
Better ways to enhance ZT.

Can we make « small and o large?




WF Law;

2 2
Ke(T) | _ ”_(Kj = 2. 44x10*WQK
To(T) 2

K=Ktk
K,: electronic component, k,: lattice component,

K: total thermal conductivity
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k: Boltzmann constant, e: electronic charge, u*: reduced chemical potential =
W/kT, m: effective mass of the carriers, I, : Carrier mean free path constant.

L, = Lorenz # (Sommerfeld value) (More appropriately Lorenz function (L(T)).

Non polar materials: r=0; Polar Materials: r=1/2; lonized impurity: r=2




Fermi-Dirac (FD) Integrals
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FD Integrals are a subset of polylogarithm functions Li.(z)

E-(u*) = —T(r + 1)Li, 4, (—expu™)

u: Chemical potential, T: Temperature, k: Boltzmann constant

u* can be less than or greater than zero




Exact FD Integral expressions can generalize
WF Law
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Highlighted terms are the fine tuned corrections to the empirical WF Law
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A(r,u*) is a function of (r,u*).

It can be expressed more concisely in terms of polylogarithms Li (w).
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Scaling of the WF Law by A(r,i1*)
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WF Law is exact only if A(r,u*)= 72/3
ris the scattering parameter.

u* is the reduced chemical potential RN
A(r,u*) is a function of u* and scales the
WF law.

Graph of A(r, u*):
* r=-0.0 (blue)

* r=0.5(black)
 r=1.0(green)
* r=1.5(gold)

* r=2.0(red)




Alternative strategies to nanostructuring-
high thermoelectric performance
SnSe single crystals and their ZT

Zhao, Kanatzidis et. al. , Nature; Volume 508, 2014

* Unprecedented ZT = 2.62 at 923K despite the
lack of nanostructuring.

* Anomalously high Grineisen parameters -
reflect the anharmonic and anisotropic bonding

* These lead to low lattice thermal conductivity
(0.23+ 0.03 WmK1 at 973K)




Theoretically, calculated x, ;, are slightly
larger than k, from experiments

Emphasizes the importance of «,
iK,(T)=x,,(T) = L(T)To(T) (Generalization of WF Law)
iK,(T)=K,,(T)-L,To(T) (Assuming WF Law)

K, & K| i : lattice and minimum lattice thermal conductivity
K,,: measured thermal conductivity

Expression for the minimum lattice thermal conductivity (Cahill, et. al,
PRB, 46, 1992, Zhao, Kanatzidis et. al. , Nature; Volume 508, 2014)

Gruneisen Parameters
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n= Number density of atoms

v,;= phonon longitudinal and transverse
velocities

®= Debye or Einstein Temperature




The integral that occurs in i ;. is given below

0. 4 x% % x%*
D( )= I (e —1) -[(e ¥ -1)° L (e¥ -1)°
~6c@)- [
¥3 * 3x?2
_6.{(3)+ _19/ je/e _1d
6.
) P
_ 2/ Z5(2)
El

where Z is the Debye Function .
Here we have Z;(2)
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K\ min) : Minimum thermal conductivity
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KI,min

K(,min) PlOtted for Transverse (T) and Longitudinal (L) arguments both
equal, going from 0.1 to 10.0. This gives a much sharper peak.
Isotropic case, ie O ®rare identical.

Fo(x,T) = x3/(e*-1) where x = (hw)/kT.
Fr - Plank black body radiation function

Extremum of FP (o,T) gives the Wien’s Displacement Law in terms of
the Lambert W function.
3D plot of k| in: ©7 /T, ©_ /T are the two independent variables.
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Conclusions

* Exact FD Integral expressions- generalize WF Law.
* Exact analytic expressions will assist material design.

* Electronic (k.) & Minimum lattice (k; ,;,) thermal conductivity
have exact analytic expressions.

* More recent observations on the influence of anharmonicity
on K, i, suggest that the Polylogarithms and Lambert W can
have more interesting applications.

* Goal: Enhance thermoelectric figure of merit (ZT).
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Lambert W function

weW=z7




Polylogarithms
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Thermoelectric Energy (TE)

* TE used as an alternative energy source.

* Use temperature gradient in order to create a
current.
* It has many uses, including:

-heating/cooling,
-generating electricity,

-measuring temperature, and ’ wgsc e
-controlling temperature e
emiconduc rf l “‘l B emiconductor

http://www.kyuden.co.jp/



TE contd.

* Includes 3 sub categories
The Seebeck effect (generate power)
The Peltier effect (refrigerate)

The Thomson effect (conductor with a
temperature gradient : absorb or emit heat
depending on the material )
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Figure 1: Saesbeck effect

hitps://www.ferrotec.com http://www.electrical4u.com/



Phonons

Collective excitation in a periodic arrangement of atoms
in condensed matter, such as solids and some liquids.

* Play a major role in many of the physical properties of
condensed matter, such as thermal conductivity.

* Phonon density of states is able to determine the heat
capacity of a crystal.

* Thermal phonons are created and destroyed through
energy fluctuations —a phenomenon that is similar to the
photon gas.




Quasi crystals (Q, : resemble more semiconductor like than
metallic character)

The empirical WF relation will not hold at intermediate T due
to electron phonon scattering

Lattice is not static!

Wiedemann-Franz law assumes: Kk, >> Kk, ; Only true when
elastic processes dominate the transport coefficients.

For T << ®, Lorenz number tends to decrease. Since, thermal
and electrical relaxation times are not identical.




Theoretically, calculated k., are slightly larger

than Kexp Measurements due to (zhao et. Al, 508,
Nature, (2014), 373) .

1. The variation in Lorenz values(1 x10° -2.4
x102)

2. Thermal diffusivity values- depends on the

details of a fit to time dependent reflectivity
curves




* High Grineisen parameters is a consequence of ‘soft’ bonding in
SnSe

* High Grineisen parameter of SnSe is reflection of its crystal
structure.




Seebeck effect

Produced in a circuit containing two or more different metals -
junctions between the metals maintained at different
temperatures

Effect caused by thermal energy of valence electrons in the
warmer part of the metal

- kinetic energy (KE) of electrons (which are very free in
metals) - migrate toward the colder part more readily than the
colder electrons migrate to the warmer part.

- colder part of the metal then more negatively charged
than the warmer part causing an electric potential

For every degree difference between the two metals -
continuous flow of charge of several microvolts

As difference in temperature increases, the thermoelectric
effect increases




Peltier effect

Thermodynamic effect occurs when current passes through a
thermocouple circuit

Produces heat at one junction - absorbs heat at the other
junction - used in computers for cooling

Heat produced is additional to heat arising from resistance of
the wires

Two metals must be dissimilar because one must be of a
higher potential energy

Typically requires temperature gradient of 70 degrees Celsius




Some important Fermi-Dirac integrals in the modified WF (Wiedemann- Franz
Law) R
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Next correction is
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The new expression now has a semi empirical
basis and provides a modified version of the
WF law.

The modified WF Law includes the corrections
that could show up for different ranges of
values of u* - can occur in the synthesis of new
doped TE materials and non TE materials.

Lorenz number (L) will be accordingly not a
constant, but will be a function of u* =p/kT.

u* is a better measure than just T.




Feynman calculations for the specific heat.

Note: We get extra terms which were not considered in Feynman (Lect 1 in
Stat. Mechs). The analysis there assumes that Bu—>o T<<1

u = energy density (E/V)

3

3
8u_ E(ﬂ*)é (,u*)Ee_”* 3 1 1

=a - +=.2
5 —u* 1
Op A 1+ 2 2 (%)

ER—

3 1 *_e‘ﬂ* _ .
+2 () + ’Le_ﬂ* +Li(-e)

+§ _e—,u*(lu.E _2/15 _I_ZIU*_E 4+




K(min) Plotted for five different values of ®'/T, from 0.5 (lowest on
plot) to 2.5 (highest on plot).

All the curves are similar, with peak at the same value of ®-/T. That
is because the Transverse contribution to K i, IS just a constant for
each curve -- ie shifts the curve up or down

K| min IS the longitudinal minimum lattice thermal conductivity.

The solution for the extrema in terms of the Lambert W function

KL,min




O, is one independent variable, and the ®;/0, is the other
independent variable.

Sweeping peak: conditions for maxima.

Not simply ratio = 1 for highest ; ;..

Isotropy is not the highest k, ;. situation.

Variation of lattice thermal conductivity is not uniform.




Graph of the FD integral F.(u*):
 r=-0.5 (blue)

* r=0.0(black)
 r=0.5(green)

* r=1.0(red) ; . 6




Approximation used by Feynman was sufficient at the time he did his
calculation for specific heat and chemical potential. In the context of current
materials like nanostructures (which fynman himself predicted) and doped
semi conductors, this more realistic approximation needs to be improvised.
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More accurate formulation of the FD integral for the energy density ‘U’
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The specific heat expression accordingly changes.




Conditions for the extremum of the
electronic thermal conductivity (k)

Lir+22L
Li .’

r+1

DI—T(r +4)Li,_, —(r+2)0(r +3 oL, =0

IC(r+4)-2r(r +3)|Li.,,°Li.,, —(r+2)r(r +3)Li Li.,,” =0

Solutions of this equation given in the following slides

This expression (MVV,CJP, 2011) occurs for the extremum for the electronic
thermal conductivity.




Case 1

z=—exp 1*|z] <<l|u*>Land wu*<0

where W (. )is the multi-valued Lambert W function for branch J.




Case 2

z =—expu*,|z| <<1,|u*>1andy* <0

Case 3 &4

Z=—Xp 4%,
z=—exp u*, p*>>1and|z| >>1

z| >1,andy*>0

Solutions for these equations are available on CJP manuscript




Modification of the Debye Theory by Max Born

Both longitudinal and transverse modes- Common minimum
wavelength A,

Am Wiong _ Vlong

AmWtrans Virans

Work of Zhao, Kanatzidis et. al —anomalously high Gruneisen
parameters which reflect strong anharmonicity and
anisotropic bonding.

Their work shows high ZT along certain axis.




Details of the Fermi-Dirac Integrals

2
All of the A(r,u*) curves are seen to be asymptoticto value 3.29 = 713 =

expected value for the Wiedemann Franz Lorenz ratio (WFL). The WFL relation
may not to be accurate even for u*>>1

Fo(u) = Gy + Gy + G =f

0

u* u* xS S
x5 dx — ——dx + f ——dx
fo e’ =x + 1 eV 41

Gy =t/ (s+ 1)

(=)
G2 = ‘fo o1 Y




G3 is handled by making the substitutiony = x — u*,
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s(s —1)y?
2

‘u*
Gz = f [,u*s + syu*s~1 + psT2 + 0(1,1*5_3)] dy
0

S st (MY G N -
=“SL o1 T IL o+10t T 2 fo o1 Ow™)




F.(u*)can be calculated from G;
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