

Introduction

Self-accelerating beams are optical beams featured by a transversely bending trajectory. Among them Airy beams have the unique characteristic of freely accelerating along parabolic trajectory without diffracting.

Airy Beam's Properties

- Non-diffractive propagation
- Bending trajectory
- Self-healing

References

- G. A. Siviloglou, et al, PRL 99, 213901 (2007)
- J. Baumgartl, et al, Nat. Ph. 2, 675 (2008)
- P. Polykin, et al, Science 324, 229 (2009) A. Chong, et al, Nat. Ph. 4, 103 (2010)
- A. D. Abdollahpour, et al, PRL 105, 253901 (2010)

Motivations

• Nowadays self-accelerating beams can be engineered to propagate along arbitrary trajectories. However, most of researches deal with those beams propagating along smooth trajectories.

• In other optical configurations, such as Bessel beams, "snaking beams" have been realized.

• Very recently, periodic self-accelerating beams taking the forms of a snake-like trajectory have been also demonstrated. Here, we present a new different approach for generating periodical self-accelerating beams by engineering the Fourier spectrum.

Snaking Bessel Beam

References

- E. Greenfield, et al, FiO/LS, Tech. Dig. OSA, paper FW1A2, (2012)
- J. Morris, et al, J. Opt. 12, 124002, (2010)
- A. Mathis, et al, arXiv:1304.3469
- J. Rasen, et al, Opt. Lett. 20, 2042 (1995)
- J. Zhao, et al, Opt. Lett. 38, 498, (2013)

120 180 240 60 z position (mm)

Centre - Énergie Matériaux Télécommunications

Periodic Self-Accelerating Beams Along Convex Trajectories Yi Hu¹, Domenico Bongiovanni¹, Zhigang Chen², and Roberto Morandotti¹

¹Université du Quebec, Institut National de la Recherche Scientifique, Varennes, Quebec J3X 1S2, Canada ²Department of Physics & Astronomy, San Francisco State University, San Francisco, CA 94132, US *bongiovanni@emt.inrs.ca

Airy Beam's Applications

where	$\mu(k_x, x)$
k_x	Spatial
k	Wavenı
$\rho(k_x)$	Phase M

In our research, 1D self-accelerating beams are generated in the real space by phase-modulating a amplitude- and Gaussian beam, in the spectral domain, and computing the Fourier bv transformation through a cylindrical lens (see setup). We found the existence of a between spectrum and mapping propagation distance. When only a phase modulation is applied, different positions in the trajectory are mapped by different frequencies in the spectrum. Introducing a large amplitude modulation, the spectrum is mapped to a straight line, tangent to the trajectory, thus bringing the beam to propagate along a straight trajectory and losing the curved propagation.

Experimental Results

Paraxial Periodic Self-accelerating Beams

Non-Paraxial Periodic Self-accelerating Beams

In the non-paraxial regime, the described spectral amplitude modulation analysis is still applicable and periodic selfaccelerating beams can be also generated beyond the paraxial limit.

beams

been

Conclusion

We have studied the combined effects of spectral phase and amplitude modulations on the dynamics of self-accelerating beams and found that:

- Large amplitude modulation, such as a Heaviside amplitude distribution, greatly changes the beam path where the straight and convex trajectories co-exist.
- Periodic self-accelerating beams are obtained by employing arrays of Heaviside amplitude distributions.

*This work is supported by a Student Research Fellowship issued by Plasma Québec (Regroupement Stratégique en Science et Application des Plasmas), Montréal, (QC), Canada.

Université d'avant-garde

Ultrafast Optical Processing Group

Experimental results corresponding to an amplitude modulation applied to a spectral cubic phase mask. Three different amplitude distributions have employed: an Heaviside amplitude distribution (up panel), a "Spectral well" amplitude distribution and a array of "Spectral well" distributions (down panel). Applying an amplitude mask the bending trajectory is affected by the amplitude modulation. In particular, beam follows a periodic path propagating along a convex trajectory when an array of "Spectral well" amplitude distribution is used to modulate the amplitude in spectral regime, thus generating periodic self-accelerating

> Non-Paraxial Beam **Paraxial Beam**