Hard Tissue Ablation with Continuous-wave kW Ytterbium Fiber Laser

Chris Galbraith

Alison W. Kinross

Paul J. L. Webster

Logan G. Wright

Cole Van Vlack

Yang Ji James M. Fraser Chenman(Cara) Yin

June 19th, 2014

Lasers – New Surgical Tool

2

SPIE conference proceeding

Traditional method – mechanical saw

VS

Modern method – laser beam

Inline Coherent Imaging (ICI)

Depth control is achieved by monitoring the ablation process in real-time with combined imaging and machining light

Basics of ICI

Basics of ICI

ICI – Combined Imaging and Machining

Example

Hard Tissue Ablation

Forrer M, Appl. Phys. B Photophysics Laser

Depth Feedback Control

Depth Feedback Control

3D "Clean" Bone Machining

6mmx6mm feature

1mm depth range

3D "Clean" Bone Machining

6mmx6mm feature

3mm depth range

Why Did It Work?

vious observations that the ablation mechanism below plasma threshold is consistent with an explosive process driven by internal vaporization of water in a confined space and demonstrates that ablation is

tical bone. Lasers Surg. Med. 25:421-434, 1999. © 1999 Wiley-Liss, Inc.

Hypothesis

1) Formation of thin carbonization layer

2) Higher absorption of carbonized area

3) <u>Explosive evaporation</u> of the molten mineral "cleans up" the carbonized layer

Conclusion

Extra slides

ICI – Combined Imaging and Machining

Example #2

Wet Bone vs Dry Bone Ablation (6.6J)

Ablation of hard bone tissue with pulsed CO₂ lasers

Mikhail Ivanenko^{a,*}, Martin Werner^b, Said Afilal^a, Manfred Klasing^a, Peter Hering^b Received 1 January 2005; accepted 1 February 2005

Preconditions for effective and "clean" laser tissue ablation

Ablation of hard tissue with a CO₂ laser follows supposedly similar thermo-mechanical mechanism like with an Er:YAG laser: light absorption in a very thin tissue layer \rightarrow almost instantaneous conversion of the absorbed energy in heat \rightarrow evaporation of the liquid, enclosed in the affected layer \rightarrow mechanical destruction of the hard bone matrix after the internal pressure reaches the ultimate tensile strength of the tissue \rightarrow ejection of the tissue microfragments and vapour \rightarrow proceeding of the ablation process into the deeper tissue layers during the laser pulse. The bone absorption at 9-10 µm is mainly due to the mineral component. Nevertheless, the tissue liquid (solution of polysaccharides, salts and other chemical substances in water) can be a driving force of the ablation at this wavelength, thanks both to a strong direct absorption and to very fast heat transfer from the mineral component at a microscopic scale [14]. At high light intensity in the focus the energy will be accumulated very quickly in the tissue and confined initially in a thin absorption layer. If the pressure built-up is much faster than heat diffusion, than most of the energy will be consumed for the ablation process and removed from the tissue with hot ablation products.

Evidence

Fixed energy hole drill

Feedback control hole drill

3D "Clean" Bone Machining

6mmx6mm feature 3mm depth range Three 50us pulses

100Hz rep rate

~1hrs

Experimental Set-up

Experimental Set-up

Combined machining and imaging laser beam

Why Laser Cutting Bone?

- Traditional method mechanical saw/mill
 - Disadvantages
 - Broad cut (~1mm) and severe hemorrhage
 - Large damaged region in surrounding tissues
 - Deposits of metal shavings
 - Mechanical vibration limits precision

Why Laser Cutting Bone?

- Modern method "light cutting"
 - Advantages
 - Non-contact cutting
 - Narrow incision with tightly focused laser beam
 - Small heated affected zone
 - Micron-precision depth control

How To Control Laser Machining?

Position control

- Focused laser beam \rightarrow high transverse resolution
- Sub-micron precision motion stage

Depth control

- In-situ depth imaging → Inline Coherent Imaging(ICI)
- High axial resolution (~16um)

Motivation

Johns Hopkins Medicine Health Library