EFT for soft drop double differential distribution

University of Manchester, Oct 2020

Aditya Pathak

In collaboration with Iain Stewart, Varun Vaidya, Lorenzo Zoppi

「「「「「「」」」 AND GOD SAID $= \mathcal{P}$ $-\frac{\partial}{\partial t}\vec{B}$ = 23 _ AND THERE WAS LIGHT.

+ gluons, W, Z, higgs, quarks, leptons

Genesis 1:3 + 20th century physics

AND GOD SAID

 $\begin{aligned} \mathcal{L} &= -\frac{1}{4} F_{A\nu} F^{\mu\nu} \\ &+ i F \mathcal{D} \mathcal{F} + h.c. \\ &+ \mathcal{F} i \mathcal{G}_{ij} \mathcal{F}_{j} \mathcal{P} + h.c. \\ &+ \left| \mathcal{D}_{M} \mathcal{P} \right|^{2} - V(\mathcal{O}) \end{aligned}$

AND THERE WAS LIGHT.

Genesis 1:3 + 21st century physics

AND GOD SAID

???????

AND THERE WAS LIGHT.

+ gluons, W, Z, higgs, quarks, leptons, GRAVITY, + ???

Jets for new physics

Standard Model has 26 free parameters

... whose origin is yet unexplained

So let's try to understand jets!

Jets are ubiquitous in collider physics and play a huge role in both new physics searches as well as precision measurements

- Why jets?
- Theory overview
- New results

collision process

What are jets?

Jets are collimated sprays of radiation emanating from an energetic particle and are a manifestation of how charges in quantum field theory are transported through a

Jets are relevant for a variety of collider physics studies

- Higgs production via gluon fusion
- Physics at the upcoming Electron Ion Collider
- Decays of boosted electroweak bosons
- Precision studies: α_s and top mass
- Jet substructure as a probe of QCD medium
- Heavy flavor, fragmentation process in jets
- h_1 • Jets for TMD physics
- New physics searches with signatures and backgrounds p_{h_2/z_2}

jet-2

 \otimes

to do a track- and jet-substructure-based extraction of α_s , but this is left as a possibility

Jet physics is rich!

The radiation inside a jet is predominantly soft and collinear

This is tied to the fundamental behavior of QCD in IR

Studying jets involves disentangling physics at different scales.

$$\mu_H = p_T J$$
$$\mu_J = m_J$$
$$\mu_S = m_J^2 / p_T J$$

$$\mu_{\rm np} = \Lambda_{\rm QCD}$$

Scale

Monte Carlo Simulations

Parton shower Monte Carlos can be improved through jet substructure studies

- hard scattering
- (QED) initial/final state radiation
- partonic decays, e.g. $t \rightarrow bW$
- parton shower evolution
- nonperturbative gluon splitting
- colour singlets
- colourless clusters
- cluster fission
- cluster \rightarrow hadrons
- hadronic decays

But there are challenges

www.opensciencegrid.org/wp-content/uploads/2014/05/event.jpg

Jet Grooming

Some notable examples:

- Mass Drop Tagger: Butterworth, Davison, Rubin, Salam, 2008
- Ellis, Vermillion, Walsh, 2009, 2010
- Pruning: Trimming: Krohn, Thaler, Wang, 2010
- Modified Mass Drop: Dasgupta, Fregoso, Marzan
- Soft Drop: Larkoski, Marzani, Soyez, Thaler 2014

₹1.5

-1.5 -1.5

0

0.5

1.5

₹1.5

Δη

-0.5

-1

Jet grooming selectively removes radiation that includes contamination from the UE and pile up.

Krohn, Thaler, Wang, 2010

- Why jets?
- Theory overview
- New results

Consider jet mass of a qg pair:

Consider jet mass of a qg pair:

Consider jet mass of a qg pair:

$$\log\left(\frac{m_J^2}{E_J^2}\right) = -\log(z^{-1}) - 2\log(\theta^{-1})$$

Uniform Probability density: $p = \frac{2\alpha_s C_F}{2}$

$$\log\left(\frac{m_J^2}{E_J^2}\right) = -\log(z^{-1}) - 2\log(\theta^{-1})$$

Uniform Probability density: $p = \frac{2\alpha_s C_F}{2}$

Double Logarithmic Approximation

$$P\left(x < \frac{m_J^2}{E_J^2}\right) = \exp\left[-\frac{\alpha_s C_F}{2\pi} \log^2\left(\frac{m_J^2}{E_J^2}\right)\right] = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{\alpha_s C_F}{2\pi}\right)^n \log^{2n}\left(\frac{m_J^2}{E_J^2}\right)$$

Note that for small jet masses: $\alpha * L^2 \sim 1$

$$m_{J,1}^2 \gg m_{J,2}^2 \gg \dots$$
 $m_{J,i}^2 = 1$

Leading logarithmic expansion can also be obtained by considering a chain of emissions strongly ordered in their contribution to the jet mass

Double Logarithmic Approximation

$$P\left(x < \frac{m_J^2}{E_J^2}\right) = \exp\left[-\frac{\alpha_s C_F}{2\pi} \log^2\left(\frac{m_J^2}{E_J^2}\right)\right] = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{\alpha_s C_F}{2\pi}\right)^n \log^{2n}\left(\frac{m_J^2}{E_J^2}\right)$$

Note that for small jet masses: $\alpha * L^2 \sim 1$

$$m_{J,1}^2 \gg m_{J,2}^2 \gg \dots \qquad m_{J,i}^2 = E_J^2 z_i \theta_i^2$$

Leading logarithmic expansion can also be obtained by considering a chain of emissions strongly ordered in their contribution to the jet mass

Individual terms in expansion diverge for small jet masses

Inaccurate prediction for low jet masses

Condition that an emission is nonperturbative:

$$p_{\rm NP}^2 = (E_J z_{\rm NP} \theta_{\rm NP})^2 \sim \Lambda_{\rm QCD}^2$$

 $\ln(\theta^{-1})$

Condition that an emission is nonperturbative:

$$p_{\rm NP}^2 = (E_J z_{\rm NP} \theta_{\rm NP})^2 \sim \Lambda_{\rm QCD}^2$$

 $\ln(\theta^{-1})$

Condition that an emission is nonperturbative:

$$p_{\rm NP}^2 = (E_J z_{\rm NP} \theta_{\rm NP})^2 \sim \Lambda_{\rm QCD}^2$$

in the wide angle emissions

$$\log\left(\frac{m_J^2}{E_J^2}\right) = -\log(z^{-1}) - 2\log(\theta^{-1})$$

forbidden area:

$$\Theta\left(z_{\rm cut} - \frac{m_J^2}{E_J^2}\right) \left[-\frac{1}{2}\log^2 z_{\rm cut} + \log z_{\rm cut}\log\left(\frac{m_J^2}{E_J^2}\right) \right] \\ + \Theta\left(\frac{m_J^2}{E_J^2} - z_{\rm cut}\right) \frac{1}{2}\log^2\left(\frac{m_J^2}{E_J^2}\right)$$

Leading Log cross section:

$$\frac{d\sigma}{d\log(m_J^2/E_J^2)} = \Theta\left(z_{\text{cut}} - \frac{m_J^2}{E_J^2}\right) \left[\frac{\alpha_s C_F}{\pi} \log z_{\text{cut}}^{-1} e^{-\frac{1}{2}\log^2 z_{\text{cut}} + \log z_{\text{cut}}\log\left(\frac{m_J^2}{E_J^2}\right)}\right] + \Theta\left(\frac{m_J^2}{E_J^2} - z_{\text{cut}}\right) \left[-\frac{\alpha_s C_F}{\pi} \log\left(\frac{m_J^2}{E_J^2}\right) e^{-\frac{\alpha_s C_F}{2\pi}\log^2\left(\frac{m_J^2}{E_J^2}\right)}\right]$$

$mMDT (\beta = 0)$

 $d\sigma$ $d\log(\overline{m_J^2/E_J^2})$ Single log region

$$\frac{d\sigma}{d\log(m_J^2/E_J^2)} = \Theta\left(z_{\rm cut} - \frac{m_J^2}{E_J^2}\right) \left[\frac{\alpha_s}{E_J^2} + \Theta\left(\frac{m_J^2}{E_J^2} - z_{\rm cut}\right)\right] \left[-\frac{\omega_s}{E_J^2}\right]$$

$mMDT (\beta = 0)$

$mMDT (\beta = 0)$

NP region of Groomed Jet mass

The large NP corrections are pushed to yet smaller jet masses

[Hoang, AP, Mantry, Stewart 2019]

Plain jet mass NP region:

 $m_J^2 \sim E_J \Lambda_{\rm QCD}$

Dasgupta, Fregoso, Marzani, Salam 2013 Marzani, Schunk, Soyez 2018 Frye, Larkoski, Schwartz, Yan 2016

Groomed jet mass NP region:

NP region of Groomed Jet mass

The large NP corrections are pushed to yet smaller jet masses

NP region of Groomed Jet mass

The large NP corrections are pushed to yet smaller jet masses

In this talk we will focus on the groomed resummation region

NP Corrections in the Resummation region

NP Corrections in the Resummation region

This emission is groomed away

NP Corrections in the Resummation region

This emission stops soft drop

• The soft drop stopping emission sets the **groomed jet radius** \mathbf{R}_{g}

NP Corrections in the Resummation region

This emission gives the main NP correction

This emission stops soft drop

- The leading NP correction comes from emissions at R_g

• The soft drop stopping emission sets the **groomed jet radius** R_g

NP Corrections in the Resummation region

Let us recall our boxed equations:

 $\left(\Delta m_J^2\right)_{\rm NP} = E_J^2 z_{\rm NP} \theta_{\rm NP}^2 \sim E_J \Lambda_{\rm QCD} \theta_{\rm NP}$

NP Corrections in the Resummation region

Let us recall our boxed equations:

$$z_{\rm NP} = \frac{\Lambda_{\rm QCD}}{E_J} \frac{1}{\theta_{\rm NP}}$$

$$\left(\Delta m_J^2\right)_{\rm NP} = E_J^2 z_{\rm NP} \theta_{\rm NP}^2 \sim E_J \Lambda_{\rm QCD} \theta_{\rm NP}^2$$

Shift in the groomed jet mass:

$$\sim E_J \Lambda_{\rm QCD} R_g$$

The shift in the jet mass is proportional to R_g

Boundary Correction

We have yet another correction in groomed jet mass due to Hadronization

A *barely passing* subjet looses energy and fails

This correction is important at the soft drop threshold:

Changes in energy:

The boundary correction is inversely proportional to R_g

A *barely failing* subjet gains energy and passes

$$\frac{1}{E_D} \frac{1}{\theta_{\rm NP}} \sim \frac{\Lambda_{\rm QCD}}{E_J} \frac{1}{R_g}$$

Both corrections matter

Contribution of the stopping subjet: $(m_J^2)_c$

Relative corrections are of the same order:

$$c_{cs} = E_J^2 z_{cs} R_g^2$$

NP corrections in the resummation region

[Hoang, AP, Mantry, Stewart 2019]

$$\frac{d\sigma_{\kappa}^{\text{had}}}{dm_J^2} = \frac{d\hat{\sigma}_{\kappa}}{dm_J^2} - Q\,\Omega_{1\kappa}^{\oplus}\,\frac{d}{dm_J^2} \left(C_1^{\kappa}(m_J^2, Q, \tilde{z}_{\text{cut}}, \beta, R)\,\frac{d\hat{\sigma}_{\kappa}}{dm_J^2}\right) + \frac{Q\Upsilon_1^{\kappa}(\beta)}{m_J^2}\,C_2^{\kappa}(m_J^2, Q, \,\tilde{z}_{\text{cut}}, \beta, R)\,\frac{d\hat{\sigma}_{\kappa}}{dm_J^2}\right)$$

Shift correction

The coefficients C₁ and C₂ are perturbatively calculable and are related to moments of R_g

$$C_1^{\kappa}(m_J^2) \sim \left\langle \frac{\theta_{cs}(m_J^2)}{2} \right\rangle ,$$

$$\left(\Delta m_J^2\right)_{\rm NP} \sim E_J \Lambda_{\rm QCD} R_g$$

Boundary correction

 $\Upsilon_1^{\kappa}(\beta) = \Upsilon_{1.0}^{\kappa} + \beta \Upsilon_{1.1}^{\kappa}$

 $C_2^{\kappa}(m_J^2) \sim \left\langle \frac{2}{\theta_{cs}(m_J^2)} \frac{m_J^2}{Q^2} \,\delta\big(z_{cs} - \tilde{z}_{\rm cut}\theta_{cs}^\beta\big) \right\rangle \,.$

$$\Delta z_{\rm NP} \sim \frac{\Lambda_{\rm QCD}}{E_J} \frac{1}{R_g}$$

NP corrections in the resummation region

$$\frac{d\sigma_{\kappa}^{\text{had}}}{dm_J^2} = \frac{d\hat{\sigma}_{\kappa}}{dm_J^2} - Q\,\Omega_{1\kappa}^{\infty}\,\frac{d}{dm_J^2} \left(C_1^{\kappa}(m_J^2, Q, \tilde{z}_{\text{cut}}, \beta, R)\,\frac{d\hat{\sigma}_{\kappa}}{dm_J^2}\right) + \frac{Q\Upsilon_1^{\kappa}(\beta)}{m_J^2}\,C_2^{\kappa}(m_J^2, Q,\,\tilde{z}_{\text{cut}}, \beta, R)\,\frac{d\hat{\sigma}_{\kappa}}{dm_J^2}\right)$$

Shift correction

The coefficients C₁ and are perturbatively calculable and are related to moments of R_g

$$C_1^{\kappa}(m_J^2) \sim \left\langle \frac{\theta_{cs}(m_J^2)}{2} \right\rangle, \qquad C_2^{\kappa}(m_J^2) \sim \left\langle \frac{2}{\theta_{cs}(m_J^2)} \frac{m_J^2}{Q^2} \,\delta\big(z_{cs} - \tilde{z}_{\rm cut} \theta_{cs}^\beta\big) \right\rangle$$

The 3 Nonperturbative parameters are **universal** and do not depend on anything but the NP scale (and whether we have a q or g jet):

$$\Omega^{\rm O}_{1\kappa} \sim \Upsilon^{\kappa}_{1,0}$$

Boundary correction

 $\Upsilon_1^{\kappa}(\beta) = \Upsilon_{1,0}^{\kappa} + \beta \Upsilon_{1,1}^{\kappa}$

$$\sim \Upsilon_{1,1}^{\kappa} \sim \Lambda_{\rm QCD}$$

The k coordinates are momentum of the NP emissions in the boosted frame:

$$q_{i}^{+} = \frac{\theta_{cs}}{2} k_{i}^{+} = \sqrt{\frac{p_{cs}^{+}}{p_{cs}^{-}}} k_{i}^{+}, \qquad q_{i}^{-} = \frac{2}{\theta_{cs}} k_{i}^{-} = \sqrt{\frac{p_{cs}^{-}}{p_{cs}^{+}}} k_{i}^{-}, \qquad q_{i\perp} = k_{i\perp}, \qquad \phi_{q_{i}} = \phi_{k_{i}}$$

Universality of the NP corrections

By applying a boost related to the momentum of the stopping emission and an azimuthal rotation we show that a **universal geometry** emerges at LL accuracy:

In the boosted frame the **catchment area of NP particles** is independent of R_g

$$\Omega_{1\kappa}^{\infty} \equiv \int \frac{d^d k}{(2\pi)^d} \, k^+ \,\overline{\Theta}_{\rm NP}^{\infty} \left(\frac{k_\perp}{k^-}, \, 1, \, \phi_k\right) \tilde{F}_{\kappa}(k^{\mu})$$

Visualizing distribution of NP emissions

The expected geometry emerges in the resummation region

Shift and Boundary Wilson Coefficients

Coefficient for shift correction:

Coefficient for boundary correction:

Testing with Monte Carlo Hadronization models 3 NP parameters fit well an entire grid of jet mass distributions for various Q, zcut, β

- We can get a lot of milage out of a simple Leading log analysis
- Groomed jet mass receives NP corrections at much smaller jet masses (compared to plain jet mass)
- Two main NP corrections in the resummation region: Shift and Boundary
 - Involves perturbatively calculable coefficients
 - 3 Universal NP parameters

Recap

So what's next?

- Why jets?
- Theory overview
- New results

NP corrections in the resummation region

We had derived the NP factorization in the strong ordering (LL) limit

 $\frac{d\sigma_{\kappa}^{\text{nad}}}{dm_{\tau}^2} = \frac{d\hat{\sigma}^{\kappa}}{dm_{\tau}^2} - Q\,\Omega_{1\kappa}^{\infty}\,\frac{d}{dm_{\tau}^2} \left(C_1^{\kappa}(m_J^2, Q, z_{\text{cut}}, \beta, R)\,\frac{d\sigma^{\kappa}}{dm_{\tau}^2}\right)$ $+ \frac{Q(\Upsilon_{1,0}^{\kappa} + \beta \Upsilon_{1,1}^{\kappa})}{m_{\tau}^2} C_2^{\kappa}(m_J^2, Q, z_{\text{cut}}, \beta, R) \frac{d\hat{\sigma}^{\kappa}}{dm_J^2} + \dots$

NP corrections in the resummation region

We had derived the NP factorization in the strong ordering (LL) limit

 $\frac{d\sigma_{\kappa}^{\text{had}}}{dm_{\tau}^2} = \frac{d\hat{\sigma}^{\kappa}}{dm_{\tau}^2} - Q\,\Omega_{1\kappa}^{\varpi}\,\frac{d}{dm_{\tau}^2} \left(C_1^{\kappa}(m_J^2, Q, z_{\text{cut}}, \beta, R)\,\frac{d\hat{\sigma}^{\kappa}}{dm_{\tau}^2}\right)$ $+ \frac{Q(\Upsilon_{1,0}^{\kappa} + \beta \Upsilon_{1,1}^{\kappa})}{m_{\tau}^2} C_2^{\kappa}(m_J^2, Q, z_{\text{cut}}, \beta, R) \frac{d\hat{\sigma}^{\kappa}}{dm_J^2} + \dots$

While a higher order NP factorization is lacking we can still improve the LL perturbative predictions of C₁ and C₂

Higher order resummation of C1 and C2

[AP, Stewart, Vaidya, Zoppi]

Consider inclusive jet measurement:

 dm^2

Calculate these moments starting from the double differential cross section:

$$M_1^{\kappa}(m_J^2) \equiv \left(\frac{d\hat{\sigma}^{\kappa}}{dm_J^2}\right)^{-1} \int d\theta_g \frac{\theta_g}{2} \frac{d^2\hat{\sigma}^{\kappa}}{dm_J^2 d\theta_g} \,,$$

$$M_{-1}^{\kappa \circledcirc}(m_J^2) \equiv \left(N_{\kappa}(\Phi_J, R, z_{\rm cut}, \beta) \frac{d\hat{\sigma}^{\kappa}}{dm_J^2} \right)^{-1} \int d\theta_g \frac{m_J^2}{Q^2} \frac{2}{\theta_g} \frac{d}{d\varepsilon} \left[N_{\kappa}(\Phi_J, R, z_{\rm cut}, \beta, \varepsilon) \frac{d^2 \hat{\sigma}^{\kappa}(\varepsilon)}{dm_J^2 d\theta_g} \right] \Big|_{\varepsilon \to 0}$$

By calculating Next-to-leading-log double differential cross section we can improve C1 and C2 predictions

To probe the effects at the boundary of soft drop we can shift the constraint slightly and expand

$$\overline{\Theta}_{\mathrm{sd}} = \Theta(z - z_{\mathrm{cut}}\theta_g^\beta) \to \overline{\Theta}_{\mathrm{sd}}(\varepsilon) = \Theta(z - z_{\mathrm{cu}})$$

$$\frac{d\sigma^{\text{had}}}{dm_J^2} = \sum_{\kappa=q,g} N_\kappa(\Phi_J, R, z_{\text{cut}}, \beta) \frac{d\sigma_\kappa^{\text{had}}}{dm_J^2}$$

 $C_1 \simeq M_1^{\kappa}$ and $C_2 \simeq M_{-1}^{\kappa \odot}$

 $_{\rm at}\theta_q^{\beta} + \varepsilon)$

Higher order resummation

We only looked at the LL cross section, but there are more terms suppressed by powers of α_s

Log of do:
$$\ln \left[\frac{\mathrm{d}\tilde{\sigma}_s}{\mathrm{d}y}\right] \sim \left[L\sum_{k=1}^{\infty} (\alpha_s L)^k\right]_{\mathrm{LL}} + \left[\sum_{k=1}^{\infty} (\alpha_s L)^k\right]_{\mathrm{NLL}} \\ + \left[\alpha_s\sum_{k=0}^{\infty} (\alpha_s L)^k\right]_{\mathrm{NNLL}} + \left[\alpha_s^2\sum_{k=0}^{\infty} (\alpha_s L)^k\right]_{\mathrm{N^3LI}}$$

Improving logarithmic accuracy is a challenging task and various tools have been developed over the last 4 decades.

- Start from an ordered chain of emissions and start including corrections there (running coupling, relaxing strong ordering, correlated emissions, ...)
- Use effective field theory methods to resum towers of logarithms

Catani et al. Nucl.Phys. B407 (1993) 3-42], see also [Luisoni Marzani, 1505.0408]

$$\tau \sim \frac{m_J^2}{E_J^2} \sim z\theta^2$$

$$E_{\rm soft} \sim$$

$$\frac{1}{\sigma_0}\frac{d\sigma}{d\tau} = H(Q^2,\mu)\int dp_L^2 dp_R^2 dk J(p_L^2,\mu) J(p_R^2,\mu)$$

Renormalization group evolution

Kenneth G. Wilson

Renormalization group evolution

Effective Field theory methods employ renormalization group methods to resum logs

RGE for the hard function: $\mu \frac{\mathrm{d}}{\mathrm{d}\mu} \log \left[H_Q\right]$

LL solution: $H_Q(Q,\mu) = H_Q(Q,Q) \exp \left[-\right]$

Compare this with our previous LL estimate with fixed coupling:

$$P\left(x < \frac{m_J^2}{E_J^2}\right) = \exp\left[-\frac{\alpha_s C_F}{2\pi} \log^2\left(\frac{m_J^2}{E_J^2}\right)\right]$$

The mJ dependent logs are provided by the combination of the jet and the soft function.

$$Q(Q,\mu)] = \Gamma_{H_Q}[\alpha_s] \log\left(\frac{\mu}{Q}\right) + \gamma_{H_Q}[\alpha_s]$$

$$\frac{\alpha_s(Q)C_F}{2\pi}\log\left(\frac{\mu^2}{Q^2}\right)+\dots$$

EFT modes for groomed jet mass

Factorization formula for groomed jet mass

Frye, Larkoski, Schwartz, Yan 2016

$$\frac{d\hat{\sigma}}{dm_J^2 d\Phi_J} = \sum_{\kappa=q,g} N_\kappa (\Phi_J, R, z_{\rm cut}, \beta, \mu_h, \mu_{gs})$$
$$\times U_J (s - Q\ell^+, \mu_J, \mu_{cs}) S_c^\kappa \left[\ell \right]$$

Distinguish groomed vs. kept soft radiation:

$U_{S_G}(Q_{\text{cut}},\mu_{gs},\mu_{cs}) Q_{\text{cut}}^{\frac{1}{1+\beta}} \int d\ell^+ ds \ J_\kappa (m_J^2 - s, \mu_J)$

$$\ell^+ Q_{\mathrm{cut}}^{rac{1}{1+eta}}, eta, \mu_{cs} \Big] \,,$$

EFT modes for groomed jet mass

Factorization formula for groomed jet mass

$$\frac{d\hat{\sigma}}{dm_J^2 d\Phi_J} = \sum_{\kappa=q,g} N_\kappa(\Phi_J, R, z_{\rm cut}, \beta, \mu_h, \mu_{gs})$$

$$\times U_J(s - Q\ell^+, \mu_J, \mu_{cs}) S_c^{\kappa} \left[\ell^+ Q_{\text{cut}}^{\frac{1}{1+\beta}}, \beta, \mu_{cs} \right]$$

N(N)LL resummation for soft drop observables:

 $(J_{s}) U_{S_G}(Q_{\text{cut}}, \mu_{gs}, \mu_{cs}) Q_{\text{cut}}^{\frac{1}{1+\beta}} \int d\ell^+ ds J_\kappa (m_J^2 - s, \mu_J)$

See also Larkoski, Moult, Neill 2017; Lee, Shrivastava, Vaidya 2019; Kang, Lee, Liu, Ringer 2018, 2019; Anderle et. al. 2007.10355

Including an additional R_g measurement $\ln(z^{-1})$ $z < z_{cut} \theta^{\beta}$ $R = 1, z_{\text{cut}} = 0.1, Q = 1000 \,\text{GeV}$ Softer US Collinear $m_j^2 = Q_{p_j^+} \bigstar$ -2-1. 0. $\theta_q^{\star}(m_J^2, Q_{\text{cut}}, \beta) < R_g < \theta_c(m_J^2)$ $\log_{10}{(m_J^2/E_J^2)}$ Pythia 8.2, Partonic $e^+e^- \rightarrow q\bar{q}, \ Q = 1000 \text{ GeV}$ The groomed jet radius is constrained by the $d\theta_g d \log_{10}(m_J^2/E_J^2)$ $z_{\rm cut} = 0.1, \ \beta = 1, \ R = 1$ jet mass measurement $\log(m_J^2/E_J^2) = -1.5$ $d^2\sigma$ $-- \theta_g^{\star}(m_J^2, Q_{\text{cut}}, \beta)$ $-- \theta_c(m_J^2)$ 0 $\overline{2+\beta}$ 11 \mathbf{t} 0.2 0.4 0.6 0.8 θ_{g}

$$\theta_c(m_J^2) = \frac{m_J}{E_J}, \qquad \theta_g^{\star}(m_J^2, Q_{\text{cut}}, \beta) = 2\left(\frac{m_J^2}{QQ_{\text{cu}}}\right)$$

EFT modes for double differential distribution

Forbidden region

- 1. Large groomed jet radius:
- 2. Intermediate groomed jet radius:
- 3. Small groomed jet radius:

 $\theta_c \ll R_g \lesssim \theta_q^\star \ll R$

 $\theta_c \ll R_q \ll \theta_a^\star \ll R$

 $\theta_c \lesssim R_g \ll \theta_q^\star \ll R$

$$\int \frac{h}{\frac{\partial}{\partial}} \frac{1}{R_g/2} J_{\kappa} \left(m_J^2 - Q\ell^+, \mu \right) S_{c_m}^{\kappa} \left(\frac{\ell^+}{R_g/2}, \mu \right).$$

Power corrections

Factorization entails expanding in a region where a power counting parameter becomes small.

The three regimes are related unto power corrections:

Connection between the large and intermediate Regime:

$$S_c^{\kappa} \Big[\ell^+ Q_{\text{cut}}^{\frac{1}{1+\beta}}, R_g Q_{\text{cut}}^{\frac{1}{1+\beta}}, \beta, \mu \Big] = S_{c_g}^{\kappa} \Big(R_g Q_{\text{cut}}^{\frac{1}{1+\beta}}, \beta, \mu \Big) S_{c_m}^{\kappa} \Big(\frac{2\ell^+}{R_g}, \mu \Big) \left[1 + \mathcal{O} \Big(\frac{R_g^{2+\beta} Q_{\text{cut}}}{\ell^+} \Big) \right]$$

Connection between small and intermediate regime:

$$\frac{1}{\left(Q\frac{R_g}{2}\right)^2} \mathcal{C}^{\kappa} \left[\frac{m_J^2}{Q^2 R_g^2}, QR_g, \mu\right] = \int \frac{d\ell^+}{R_g/2} J_{\kappa} \left(m_J^2 - Q\ell^+, \mu\right) S_{c_m}^{\kappa} \left(\frac{\ell^+}{R_g/2}, \mu\right) \left[1 + \mathcal{O}\left(\frac{4m_J^2}{Q^2 R_g^2}\right)\right]$$

Matched Cross Section

We match the three regimes consistently turning on/off resummation in the three regions:

In practice the intermediate regime is really valid only for $\beta > 1$

NLL + NLO results for C₁

By integrating over the matched cumulant we can evaluate a more precise prediction for C1

$$M_1^q(m_J^2) = \left[\int_{\theta_{\min}}^{\theta_{\max}} \frac{\theta_g}{2} \left(\frac{d}{dR_g} \frac{d\Sigma^q(R_g)}{dm_J^2 d\Phi_J} \right)_{R_g = \theta_g} \right] / \int_{\theta_{\min}}^{\theta_{\max}} \left(\frac{d}{dR_g} \frac{d\Sigma^q(R_g)}{dm_J^2 d\Phi_J} \right)_{R_g = \theta_g}$$

We expect M1 ~ C1

MC data agrees better with the improved prediction

Soft drop boundary cross section

We are interested in the "boundary" moment:

$$M_{-1}^{\kappa \otimes}(m_J^2) = \lim_{\varepsilon \to 0} \left(\frac{d\hat{\sigma}^{\kappa}}{dm_J^2} \right)^{-1}$$

The connection between this moment and C2 is more subtle

 $\frac{-1}{d\varepsilon} \int d\theta_g \, \frac{m_J^2}{Q^2} \frac{2}{\theta_a} \frac{d^2 \hat{\sigma}^{\kappa}(\varepsilon)}{dm_J^2 d\theta_a} \, ;$

Soft drop boundary cross section

Expand the shifted soft drop constraint and consistently resum

Additional O(ϵ) single logs for $\beta = 0$

$$S_{G}^{\kappa[1],\text{bare}}[Q_{\text{cut}}, R, \beta, \Theta_{\text{sd}}(\varepsilon), \mu] = S_{G}^{\kappa[1],\text{bare}}[Q_{\text{cut}}, R, \beta, \mu] + \frac{Q\varepsilon}{Q_{\text{cut}}} S_{G,\varepsilon}^{\kappa[1],\text{bare}}[Q_{\text{cut}}, R, \beta, \mu] + \mathcal{O}(\varepsilon^2)$$

$$S_{G,\varepsilon}^{\kappa[1],\text{bare}} \left[Q_{\text{cut}}, R, \beta, \mu \right] =$$

$$\left(\beta = 0\right) \qquad = \frac{\alpha_s C_\kappa}{\pi} \left[\frac{1}{\epsilon_{\text{UV}}} + 2\log\left(\frac{\mu}{Q_{\text{cut}}\tan\frac{R}{2}}\right) \right]$$

$$\left(\beta > 0\right) \qquad = \frac{\alpha_s C_\kappa}{\pi} \left[\frac{2}{\beta} \frac{1}{\sin^\beta\left(\frac{R}{2}\right)} + \dots \right],$$

$$\frac{d\Sigma^{\kappa}(R_g, \delta_{\beta,0}\gamma_0(\varepsilon, z_{\rm cut}))}{dm_J^2} + \frac{Q\varepsilon}{Q_{\rm cut}}\frac{d\Delta\Sigma^{\kappa}_{\varepsilon}(R_g)}{dm_J^2} + \mathcal{O}(\varepsilon)$$

Similar expansion for other soft functions

NLL + NLO results for C₂

Summary

- Jet physics plays an important role in the search for new physics
- Interesting nonperturbative effects in groomed jet mass
- Higher order resummation of Wilson coefficients C1 and C2 via double differential distribution
- Future goals to study further the double differential cross section as a tool for some exciting precision physics!

Merci