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The Vivabrain project

Figure: The Vivabrain Project
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VIVABRAIN project

Step 1: Extracting the vascular network from brain MRA data

Filtering
Improve images (Denoising, contrast enhancement)
Segmentation
Detecting the vascular network
Post-processing
Reconnexion, quantitative data analysis: directions, diameter, vessel
density ...)
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Classical approach for tubular segmentation

Figure: Classical approach using the Hessian
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Problems with local scale-space derivatives

Figure: Scale-space locality problem
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Errors in estimation due to locality

Figure: Errors due to locality

Segmentation and filtering of tubular structures in 2D and 3D 7 / 56



In this talk

A new filtering method to improve existing segmentation pipeline

2 complementary axes :
Noise reduction
Vascular network contrast
enhancement

3D MRA data surface rendering

Maximum intensity
projection
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Adjacency graph

A path, a, is a set of neighboring pixels on a graph defining an adjacency
relation x → y :

a = (a1, a2, ..., aL) si ak → ak+1

Adjacency graph (black)
and vertical path a of length 4 (blue).
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Multiple orientations

Filtering of an image by a path opening
Preserving thin structures in arbitrary orientations imposes to filter the
image by several paths each using a particular adjacency graph.

The 2D space is discretized in 4 different orientations :
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Multiple orientations in 3D

In 3D, the discrete space is discretized in 7 different orientations :
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Path filtering
Example binary path opening

αL =
∨
{σ(a), a ∈ ΠL(X )}

σL : Set of all pixels belonging to path a.
ΠL(X ) : Set of all paths of length L.
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Principle

Path definition relaxation
A path can now admit K consecutive noise pixels between path pixels

This makes it possible to preserve partially disconnected thin/tubular
structures :

Path with L = 10 and K = 1 noise pixel

This notion is different from that of path incompleteness by Heijman et
al, it was proposed by F. Cokelaer [Cok13] and is simpler to implement.
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Example

RPO Example on a synthetic, noisy 2D image (AWGN mean = 0, σ = 20
:

Initial image 50x50px RPO L=10, K=1
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The 3D case is more complicated than 2D

2D Case
2 Types of structures :

Fibres and Blobs

RPO preserves only fibres if blobs
are not too big.

3D Case
3 types de structures :

Tubes, Planes and Blobs

RPO preserves both tubes and
planes.

An RPO by itself preserves more than just tubes in 3D images. Another
filter is thus necessary to eliminate planar structures.
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Principle

Hypothesis
Planar structures should be detected in at least one more orientation
than tubular structures

Test of this hypothesis on 3 synthetic structures :

Tube Plane Half-ellipsoid
surface

Segmentation and filtering of tubular structures in 2D and 3D 16 / 56



Hypothesis testing

Test :
Filtering 100 3D images of each structure and measuring the number of
RPO orientations still containing the structure after filtering

Histogram of the number of orientations preserving the synthetic
structure:

Tubes Planes Half-ellipsoids
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Methodology
New operator
We order the result of each RPO orientation pixelwise and compute

RORPO = RPO1 − RPOi

RPO1 : Result of standard RPO (max of all RPOs)
RPOi : The i − th rank of the RPO.
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Robustness test
We compute the RORPO error rate on 100 random synthetic structure of
each type.

%error = nberror
nbpixels

× 100

nberror : number of false negative pixels for the tubes and of false positifs
for the planes and half-ellipsoids.

Tubes (m = 4%) Planes (m = 0%)
Half ellipsoids
(m = 4%)
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What is a multi-scale approach ?
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Multiscale Principle
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Intensity result in 2D

Figure: Intensity feature in 2D
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Intensity result in 3D on a real MRA

Initial image RORPO with a multiscale
approach

Segmentation and filtering of tubular structures in 2D and 3D 23 / 56



Orientation result in 2D

Figure: Orientation feature in 2D
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Comparisons

We performed qualitative comparisons of various methods according to
four criteria on a full cerebral MRA

Capacity to reduce background noise
Capacity to detect large blood vessels
Capacity to detect small blood vessels
Presence of artifacts

RORPO with classical adjacencies and a multiscale approach based on
path lengths seems to provide the best compromise.
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Quantitative comparison

(a) CCM=0.605, Dice=0.634 (b)

(c)

Figure: Synthetic image: (a) maximum intensity projection and (b) isosurface.
(c) Ground truth.Segmentation and filtering of tubular structures in 2D and 3D 26 / 56



Quantitative comparison - filtering result

(a) CCM=0.884,
Dice=0.893

(b) CCM=0.706,
Dice=0.730

(c) CCM=0.655,
Dice=0.654

Figure: Filtered synthetic image: maximum intensity projection. (a) RORPO.
(b) Frangi’s vesselness. (c) and RPO-top-hat.
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Quantitative comparison - ROC analysis
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Figure: ROC curves on synthetic data. (a) Comparison of the three filters, plus
the native image. (b) Noise robustness of the RORPO filter.
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Quantitative comparison, synthetic data

Figure: Synthetic 3D data
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Quantitative comparison, synthetic data, ROC analysis

Figure: Three-way ROC analysis
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MRA result

Initial image MIP RORPO with a length-based
multiscale approach
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Quantitative comparison on HF data

Figure: MCC result on HF segmentation (a) : RORPO (b), OOF (c), FV (d)
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Comparaison with Frangi vesselness

Proposed method isosurface Optimized Frangi vesselness
isosurface
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Quantitative comparison - MICCAI Rotterdam
Coronaries Database
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Figure: ROC curves of RORPO and Frangi’s Vesselness on the Rotterdam
repository. For both filtering the central curve is the mean ROC curve and the
two others are the mean plus or minus one standard deviation ROC curve.
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Orientation feature 3D

Figure: Orientation feature in 3D, HF data: RORPO (a) vs FV (b)
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Optimization approach

Model

minimize
x

max
‖F‖∞≤1

F>((Ax)
√
w) + 1

2λ‖x − f ‖2 (1)
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Directional TV idea

Figure: Directional TV idea
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Discrete Span

Figure: Vector span
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Directional TV theoretical edge weight

Figure: Theoretical edge weights
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DRIVE result

Figure: 2D Result on DRIVE
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DRIVE result details

Figure: 2D Result on DRIVE (details)
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Algorithm

Primal-dual algorithm for solving this model
Let γ ∈ (0,+∞), u0 ∈ RN and u1 ∈ RN .
Set x0 ∈ RN , and ∀r ∈ {0, . . . ,R} , vr ,0 ∈ RPr .
For k = 0, . . .

y1,k = xk − γ
(
∇ϕ(xk) +

∑R
r=0 V>r vr ,k

)
p1,k = proxγιX (y1,k)
For r = 0, . . . ,R

y2,r ,k = vr ,k + γVrxk
p2,r ,k = proxγψ∗r (y2,r ,k)
q2,r ,k = p2,r ,k + γVrp1,k
vr ,k+1 = vr ,k − y2,r ,k + q2,r ,k

q1,k = p1,k − γ
(
∇ϕ(p1,k) +

∑R
r=0 V>r p2,r ,k

)
xk+1 = xk − y1,k + q1,k
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Results 3D

(a) Original (max. projec-
tion view)

(b) Ground truth (c) Piecewise const.
(0.753, 0.984)

(d) Ours (0.835, 1.000)

Figure: Inhomogeneous VascuSynth results (TPR, SPC).
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Restoration 3D, with Poisson noise

Figure: Restoration with mixed gradient: slices
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Restoration 3D, with Poisson noise

Figure: Restoration with mixed gradient: Max Intensity Projections
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Restoration 3D, with Poisson noise

Figure: Restoration with mixed gradient: Max Intensity Projections
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Conclusion

We have studied three thin object filtering methods :
RPO_Opening
RORPO
RORPO with restricted adjacencies

Associated with two multiscale approaches :
Based on path length
Based on path diameters

The best compromise was found to be RORPO with classical adjacencies
and length-based multiscale approach. Our method is effective at

significantly reducing background noise while simultaneously reducing
non-tubular structures and preserving the majority of blood vessels.
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Current work

Quantitative evaluation of our results :
Use ground truth from MICCAI & Heartflow Inc MRA data.
Applications in small veins detection in the human brain with NIH
and Max-Planck institute: link with multiple sclerosis.
Application to angio CT of the small animal.
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Perspectives

Produce images of scales

Adapt the path operator framework to the max-tree/min-tree
framework

This would allow discriminating objects on more complex
measures than mere length
Think about incorporating robustness to max-trees / min-trees
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Literature on path operators

Definitions and early algorithms [BT00, HBT04, HBT05]
Faster algorithms [AT05, TA07]
Extension to 3D and regularisation [LH10]
RPO and 3D [Cok13], [CTC12]
RORPO, segmentation,
restoration [MTNP14, MTNP15, MNT+17, MTNP18, MNTP18]
Applications [VCBT09, VCB+09, VCB+10, SVB+14]
DCTV [CGN+13]
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Thanks for your
attention
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