Differential measurements of WZ production in SUSY-inspired phase space

Batool Safarzadeh (University of Sussex)

15/06/2022

Differential measurements motivations

- mainly for the making search analysis re-interpretable and excluding certain models, e.g using CONTUR
- Improving the MC modelling in the extreme phase space, where the large theoretical uncertainties dominate the searches
- Why unfold three-lepton + missing transfers energy final states
- One example of re-interpretation:
 - Anomalous magnetic momentum of the muons : $a_{\mu} = (g-2)_{\mu}$
 - SUSY could explain the discrepancy between the experiment and SM (theory) results
- unfolded SUSY-motivated measurement could be used to narrow the range of possible scenarios

Pheno paper 1, paper 2, Talk : <u>Slides</u>

3 Leptons search (RPC)

- Chargino-neutralino pair production
 - intermediate WZ or Wh (SM Higgs) 0
 - bino-like LSP, wino-like NSLP \bigcirc
- WZ (on-shell) \bigcirc
 - OSSF pair with mll \in [75,105] GeV
 - SR binning in jet-multiplicity, HT(scalar sum of Jet pT) 0
 - HT > 200 GeV : at least one ISR jet, targeting the compressed scenarios
 - SR binning in m_T (W decay) & MET 0
- Wh / WZ (off-shell)
 - SFOS pair with m]J∉[75,105] GeV 0
 - SR binning in jet-multiplicity, HT, m_T & MET
 - DFOS pair, selecting events with close-by leptons

arxiv

3 Leptons Search (BKG Estimation)

- Diboson WZ: (Sherpa MC sample)
 - Dominant background, estimated using MC normalised to data in the CRs with purity of > 80% and signal contamination < 10%
 - Due to the jet multiplicity mis-modelling, XS NF is calculated in the given nJets/HT bin
 - 3 Validation regions (VRs) for the given *nJets/HT* bin to validate the measured NF from related CR
- $\sim Z/\gamma$ +jets:
 - on non-prompt lepton background, estimated using datadriven method

• ttbar :

• Non-prompt lepton background, validated in the ttbar dominated region, simulation well model top process where the heavy flavour are mainly the source of the faked lepton

4

arxiv

3 Leptons Search (Results)

• SRs targeting moderate mass splittings $\Delta m > 90 \text{ GeV}$

• High HT SR : highly compressed mass spectra $\Delta m \sim 90 \text{ GeV}$

• SFOS:

- Targeting Wh and WZ with mass splitting $\Delta m < 90$ GeV
- **DFOS**:
 - Strong signal sensitivity for Wh scenario, main backgrounds from *tt*⁻, VVV, and Higgs processes
- Differential measurement of WZ production in the SFOS region

3 Leptons Search (Interpretation)

- No significant excess
 - WZ Scenario
 - The mass splitting range that yields a dark matter relic density equal to the observed relic density
 - Wh Scenario
 - $\, \bullet \,$ weaker observed exclusion limit due to 2 σ in DFOS SR

WZ SM measurements (ATLAS)

- Published (36/fb) : paper (Link) & public results (link)
 - The Powheg+Pythia MC prediction is used for the W±Z signal contribution. It is scaled by a global factor of 1.18 to match the measured inclusive W±Z cross section
 - Measurement region:
 - $3L(e,\mu)$
 - mT > 30 GeV to suppress non-prompt background
 - No MET requirement
 - Mll (mZ) ∈[81.2,101.2] GeV

Variable	Total	Fid
Lepton $ \eta $		< 2
$p_{\rm T}$ of ℓ_Z , $p_{\rm T}$ of ℓ_W [GeV]		> 1
<i>m</i> _Z range [GeV]	66 – 116	$ m_Z $
$m_{\rm T}^W$ [GeV]		> 3
$\Delta \hat{R}(\ell_Z^-, \ell_Z^+), \Delta R(\ell_Z, \ell_W)$		> 0

WZ SM measurements (ATLAS)

• Published (36/fb) : paper (<u>Link</u>) & public results (<u>link</u>)

- Differential cross section in the fiducial phase space as a function of the exclusive jet multiplicity of jets with $p_T > 25 \text{ GeV}$
- Differential measurement as function of reconstructed bosons (W, Z) pT

WZ SM measurements (ATLAS)

- Published (36/fb) : paper (Link) & public results (link)
 - Differential measurement as function of reconstructed bosons $\Delta \phi$ (W, Z), the transverse mass of the W±Z system
 - It is assumed that the whole MET of each event arises from the neutrino of the W boson decay
 - Absolute difference between the rapidities of the Z boson and the charged lepton from the decay of the W boson

WZ SM measurements (CMS)

- Published (Run 2 data) : paper (Link) & public results (link)
 - The Powheg+Pythia MC prediction is used for the W[±]Z signal contribution.
 - Measurement region:
 - $3L(e,\mu)$
 - MET > 30 GeV to suppress non-prompt background
 - No MT requirement
 - Mll (mZ) ∈[76.2,106.2] GeV
 - Mlll > 100 GeV to suppress Z+ γ process

Region	N_ℓ	$p_{\rm T}\{\ell_{Z1}, \ell_{Z2}, \ell_{\rm W}, \ell_4\}$	N _{OSSF}	$ M(\ell_{Z1},\ell_{Z2})-m_Z $	$p_{\mathrm{T}}^{\mathrm{miss}}$	N _{b tag}	$\min(M(\ell\ell'))$	$M(\ell_{Z1}, \ell_{Z2}, \ell_W)$
SR	=3	>{25,10,25,—} GeV	≥ 1	< 15 GeV	>30 GeV	=0	>4 GeV	>100 GeV
CR-ZZ	=4	>{25,10,25,10} GeV	≥ 1	< 15 GeV		=0	$>4\mathrm{GeV}$	>100 GeV
CR-ttZ	=3	>{25,10,25,—} GeV	≥ 1	< 15 GeV	>30 GeV	>0	$>4\mathrm{GeV}$	>100 GeV
CR-conv	=3	>{25,10,25,—} GeV	≥ 1		\leq 30 GeV	=0	>4GeV	<100 GeV

WZ SM measurements (CMS)

- Published (Run 2 data) : paper (Link) & public results (link)
 - Differential cross section in the fiducial phase space as a function of the exclusive jet multiplicity of jets with $p_r > 25 \text{ GeV}$
 - Differential measurement as function of reconstructed bosons (W, Z) pT, $\Delta \phi$ (W, Z), the transverse mass of the W±Z system
 - Almost Similar variables as ATLAS except $p_T v$

WZ unfolding complementary to WZ SM measurement

SFOS & on-shell Z boson (Mll \in [76.2,106.2] GeV)

- SM measurement is done in an inclusive Jet multiplicity 0
- ATLAS: no MET requirement and loose MT selection 0
- CMS: no MT requirement and loose MET selection 0
- WZ unfolding: 0
 - \bigcirc may appear
 - MT > 70 GeV instead of 80 GeV
 - To reduce the bias of large event migration in/out unfolding region
 - Unfolding the BSM sensitive variables (MET, MT, ...) in different nJet/HT regions \bigcirc
 - Unfolding HT< 200 GeV & HT > 200 GeV regions \bigcirc
 - High HT (> 200 GeV) with at least one high-pT ISR je
 - Targeting the challenging phase space, where the mass differences between C1 and N2 0 is ~Z-boson mass
 - WZ purity is more than 85%, negligible contributions from non-prompt BKG

Unfolding the high-MT (\geq MW) and high-MET (> 100 GeV) regions where new physics

WZ unfolding complementary to WZ SM measurement

- SFOS & off-shell Z boson (Mll \notin [76.2,106.2] GeV)
- Exclude low mass resonances
 - SM-Like region, targeting compressed region $\Delta m(C \mid 1, N \mid 1) < mZ$ or non-WZ scenarios No MT requirement & MET > 50 GeV is required to suppress the BKG from fake process
 - 0 0
 - Comparable statistics with on-shell region \bigcirc
 - SM measurement doesn't cover off-shell region 0 Orthogonal to SM measurement region by definition 0
 - WZ purity drops to 60-65% but still is the main contribution 0
 - 2nd dominate SM BKG is ttbar (20-25%), the rest comes from Z+jets and ZZ processes 0
 - Unfolding regions divided to 0
 - Mll < 76.2 GeV (low mll)0
 - Mll > 106.2 GeV (high mll)
 - Similar nJets/HT regions as on-shell region 0

Differential measurements (strategy)

- On-shell region:
 - WZ is the dominate contribution in SUSY-like SR (> 85%) 0
 - Unfolding WZ process, subtracting non-prompt (estimated from data) and non-WZ \bigcirc background (from MC)
 - Unfolding variables used in the SUSY search 0
- Off-shell region: \bigcirc
 - WZ is still the dominate background but ttbar contribution isn't negligible 0
 - Unfolding the final state to make the results re-interpretable \bigcirc
 - **BKG** with Non-prompt Lepton \bigcirc
 - Subtract the contribution from Z+jets which estimated from data \bigcirc
 - \bigcirc prompt BKG?
 - Prompt BKG estimated from MC simulation, treated as a signal 0

ttbar with a non-prompt lepton was estimated using MC simulation, should/will be treated as

Re-interpretation (Possible BSM scenarios)

- Differential measurement in the SUSY-like phase space where the new particle may appear \bigcirc makes the results re-interpretable in terms of theories not considered in the original analysis publication
 - Original analysis generic search for excess on top of SM exception in several phase space 0
 - 5 different phase spaces to be unfolded \bigcirc
 - Extreme phase spaces (High HT, high MT or MET) e.g targeting boosted topologies \bigcirc

- Planning for BSM reinterpretations
 - CMS performed a search for anomalous values of the charged triple gauge coupling WWZ 0 gauge coupling
 - Different unfolded phase spaces maybe consider more than one BSM scenarios 0

which lead to new constraints on beyond-the-standard-model contributions to the WZ triple

Back up

WZ Estimation (MET mis-measurement)

Using WY events, W—>Iv

Wy and WZ have very similar MT shapes because their production mechanisms are similar