Precision Monte Carlos for multi-boson processes

Jonas M. Lindert

UK Research and Innovation

Workshop on measurements and reinterpretations... at the LHC

U Sussex 15th June 2022

VV

VBF-V VBS-VV

multi-lepton dynamics, giant QCD K-factors

multi-lepton dynamics, giant QCD K-factors background V+jet $\bigvee\bigvee$ background background background **VBF-V** VBS-VV forward-jet dynamics

aTGC

aQGC

Multibosons: theory state-of-the art fixed-order

$$\bigvee\bigvee\bigvee$$

NLO QCD+NLO EW / NLO QCD*+LO EW

Multibosons: theory state-of-the art fixed-order

V+jets

NLO QCD+NLO EW

VV

NNLO QCD+NLO EW

 $\bigvee\bigvee\bigvee$

NLO QCD+NLO EW

VBF-V

NLO QCD+NLO EW

[JML, Pozzorini, Schönherr, 2204.07652]

VBS-VV

NLO QCD+NLO EW / NLO QCD*+LO EW

*: VBF approximation

Multibosons: theory state-of-the art Monte Carlo

V+jets VV VV

NLOPS QCD (0,1,2j) x
NLOPS QCD (0,1) x
NLO EWvirt
NNLOPS QCD
NLOPS EW

VBF-V VBS-VV

NLOPS* QCD
NLOPS* QCD

NLOPS QCD (nj) =

- •FxFx in aMC@NLO
- •MEPS@NLO in Sherpa

*: VBF approximation

NLOPS EW

Multibosons: theory state-of-the art Monte Carlo

V+jets $\bigvee\bigvee$ $\bigvee\bigvee\bigvee$ NLOPS QCD (0,1) x NLOPS QCD NLOPS QCD (0,1,2j) x **NLO EWvirt** NLO EWvirt NNLOPS QCD **NLOPS EW VBF-V VBS-VV** NLOPS* QCD NLOPS* QCD NLOPS EW

^{*:} VBF approximation

Perturbative expansion: VV, VVV

(single perturbative order at LO)

Perturbative expansion: VV, VVV

(single perturbative order at LO)

Perturbative expansion for VV

$$\label{eq:dsigma} \begin{split} \mathrm{d}\sigma &= \mathrm{d}\sigma_{\mathrm{LO}} + \alpha_S\,\mathrm{d}\sigma_{\mathrm{NLO}} + \alpha_{\mathrm{EW}}\,\mathrm{d}\sigma_{\mathrm{NLO}\,\mathrm{EW}} \\ &\qquad \qquad \mathrm{NLO\,QCD} \qquad \mathrm{NLO\,EW} \qquad ? \\ &\qquad \qquad + \alpha_S^2\,\mathrm{d}\sigma_{\mathrm{NNLO}} + \alpha_{\mathrm{EW}}^2\,\mathrm{d}\sigma_{\mathrm{NNLO\,EW}} + \alpha_S\alpha_{\mathrm{EW}}\,\mathrm{d}\sigma_{\mathrm{NNLO\,QCD\times EW}} \\ &\qquad \qquad \mathrm{NNLO\,QCD} \qquad \qquad \mathrm{NNLO\,EW} \qquad \qquad \mathrm{NNLO\,QCD\text{-}EW} \\ &\qquad \qquad \qquad + \alpha_S^3\,\mathrm{d}\sigma_{\mathrm{NNLO}} + \dots \\ &\qquad \qquad \qquad \mathrm{N3LO\,QCD} \end{split}$$

NNLO QCD + NLO EW

4l-SF-ZZ	$pp \to \ell^+\ell^-\ell^+\ell^-$	ZZ
4l-DF-ZZ	$pp \to \ell^+\ell^-\ell'^+\ell'^-$	ZZ
3l-SF-WZ	$pp \to \ell^+ \ell^- \ell \nu_\ell$	WZ
3l-DF-WZ	$pp \to \ell^+ \ell^- \ell' \nu_{\ell'}$	WZ
2l-SF-ZZ	$pp \to \ell^+ \ell^- \nu_{\ell'} \bar{\nu}_{\ell'}$	ZZ
2l-SF-ZZWW	$pp \to \ell^+ \ell^- \nu_\ell \bar{\nu}_\ell$	ZZ,WW
2l-DF-WW	$pp \to \ell^+ \ell'^- \nu_\ell \bar{\nu}_{\ell'}$	WW

In Matrix+OpenLoops all (massive) diboson processes are now available at NNLO QCD + NLO EW

[M. Grazzini, S. Kallweit, JML, S. Pozzorini, M. Wiesemann; 1912.00068]

NNLO QCD + NLO EW for dibosons: pTV2

[M. Grazzini, S. Kallweit, JML, S. Pozzorini, M. Wiesemann; 1912.00068]

- •moderate QCD corrections
 - NNLO/NLO QCD very small at large pTV2
 - NNLO QCD uncertainty: few percent
- •NLO EW/LO=-(50-60)% @ I TeV

$$\begin{split} \mathrm{d}\sigma_{\mathrm{NNLO\,QCD+EW}} &= \mathrm{d}\sigma_{\mathrm{LO}} \left(1 + \delta_{\mathrm{QCD}} + \delta_{\mathrm{EW}} \right) + \mathrm{d}\sigma_{\mathrm{LO}}^{gg} \\ \mathrm{d}\sigma_{\mathrm{NNLO\,QCD\times EW}} &= \mathrm{d}\sigma_{\mathrm{LO}} \left(1 + \delta_{\mathrm{QCD}} \right) \left(1 + \delta_{\mathrm{EW}} \right) + \mathrm{d}\sigma_{\mathrm{LO}}^{gg} \\ &= \mathrm{d}\sigma_{\mathrm{NNLO\,QCD+EW}} + \mathrm{d}\sigma_{\mathrm{LO}} \delta_{\mathrm{QCD}} \, \delta_{\mathrm{EW}} \end{split}$$

- •difference very conservative upper bound on $\mathcal{O}(\alpha_S \alpha)$
- •multiplicative/factorised combination clearly superior (EW Sudakov logs x soft QCD)
- •dominant uncertainty at large pTV2: $\mathcal{O}(\alpha^2)$ ~ $\alpha_{\rm w}^2 \log^4(Q^2/M_W^2)$

Estimate: $\frac{1}{2}\delta_{\mathrm{EW}}^2$

NNLO QCD + NLO EW for dibosons: pTV2

Giant QCD K-factors and EW corrections: pTVI

[M. Grazzini, S. Kallweit, JML, S. Pozzorini, M. Wiesemann; 1912.00068]

- NLO QCD/LO=2-5! ("giant K-factor")
- •at large pTVI:VV phase-space is dominated by V+jet (w/ soft V radiation)

$$\frac{d\sigma^{V(V)j}}{d\sigma_{VV}^{\text{LO}}} \propto \alpha_{\text{S}} \log^2 \left(\frac{Q^2}{M_W^2}\right) \simeq 3 \quad \text{at} \quad Q = 1 \text{ TeV}$$

- •NNLO / NLO QCD moderate and NNLO uncert. 5-10%
- ■•NLO EW/LO=-(40-50)%
 - Very large difference ${
 m d}\sigma_{
 m NNLO\,QCD+EW}$ vs. ${
 m d}\sigma_{
 m NNLO\,QCD imes EW}$
 - Problems:
 - I. In additive combination dominant Vj topology does not receive any EW corrections
 - 2. In multiplicative combination EW correction for VV is applied to Vj hard process
 - Pragmatic solution I: take average as nominal and spread as uncertainty
 - Pragmatic solution II: apply jet veto to constrain Vj toplogoies

MEPS @ NLO QCD + EW:WW(+jet)

[Bräuer, Denner, Pellen, Schönherr, Schumann; '20]

- More rigorous solution: merge VVj incl. approx. EW corrections with VV with Sherpa's MEPS@NLO QCD + EWvirt
- However, not NNLO QCD accurate

MEPS @ NLO QCD + EW:WW(+jet)

[Bräuer, Denner, Pellen, Schönherr, Schumann; '20]

- More rigorous solution: merge VVj incl. approx. EW corrections with VV with Sherpa's MEPS@NLO QCD + EWvirt
- However, not NNLO QCD accurate

MEPS @ NLO QCD + EW: ZZ(+jet)

[Bothmann, Napoletano, Schönherr, Schumann, Villani; '21]

• EWsud based on [Bothmann, Napoletano, '20]: process-independent implementation of Sudakov logs, see also [Pagani, Zaro '21]

MEPS @ NLO QCD + EW: ZZ(+jet)

[Bothmann, Napoletano, Schönherr, Schumann, Villani; '21]

PS MC: NNLO QCD + PS for WW via MiNNLO_{PS}

[Lombardi, Wiesemann; Zanderighi '21]

- MiNNLO_{PS} physical down to pTVV=0
- Latest implementation does not require computationally expensive reweighting required earlier

PS MC: NNLO QCD + PS for WW via MiNNLO_{PS}

[Lombardi, Wiesemann; Zanderighi '21]

PS MC: NNLO QCD + PS for ZZ via MiNNLO_{PS}

Geneva: NNLO+PS

[Alioli, Broggio, Gavardi, Kallweit, Lim, Nagar, Napoletano, '21]

MINNLOPS: nNNLO+PS

[Buonocore, Koole, Lombardi, Rottoli, Wiesemann, Zanderighi, '21]

PS MC: NNLO QCD + PS for ZZ via MiNNLO_{PS}

[Buonocore, Koole, Lombardi, Rottoli, Wiesemann, Zanderighi, '21]

- nNNLO+PS predictions in good agreement with CMS results [arXiv:2009.01186]
- inclusion of EW corrections (through fixed-order NLO K-factor) required to describe tails of distributions

PS MC: NLO QCD + NLO EW PS

[Chiesa, Re, Oleari '20]

- Note: resonance-aware NLO EW matching required (POWHEG-BOX-RES [Ježo, Nason, '15])
- Missing: photon-induced channels
- Question: NLO (QCD + EW) PS (QCD + QED) / (NLO QCD PS QCD) x NLO EW

PS MC: NNLO QCD x NLO EW PS for WZ

[JML, Lombardi, Wiesemann, Zanderighi, Zanoli, to appear]

- NNLOPS QCD x NLOPS EW combination via reweighing (NLOPS EW resonance-aware)
- Next: combination at generator level

gg-induced WW and ZZ production

- Formally same order as NNLO QCD
- Enhanced due to gg flux
- Interference with H->VV

- Sizeable QCD corrections (formally N3LO QCD)
- For m4l < 340 GeV 1/Mt expansion reliable

NLO+PS for gg \rightarrow VV/H \rightarrow 41

[Alioli, Ferrario Ravasio, JML, Röntsch, '21]

- •ggWW/ggZZ @ NLO QCD + PS available!
- •crucial for off-shell Higgs measurements

Conclusions

- There is no clear scale/signature for new physics effects: Let's explore the unknown leaving no stone unturned!
- ▶ Precision is key for SM (QCD/EW/Higgs) measurements, SM parameter determination, as well as for BSM searches.

Incredible progress in theory predictions for multibosons

VV:

- NNLO QCD + NLO EW available in MATRIX+OpenLoops
- MEPS @ NLO (QCD + EWapprox) available in Sherpa
- NLO (QCD + EW) + PS (QCD + QED) available in POWHEG
- NLO QCDgg PS available in POWHEG
- NNLO QCD PS via MiNNLO available (combined with NLOPS EW)

Remaining theory uncertainties: mixed QCD-EW, NNLO EW

Backup

Giant K-factors and effect of jet veto

 10^{2}

 $[df]_{10^{-1}} 1$ 10^{-1} 10^{-2}

 10^{-3}

WZ

 $p_{\mathrm{T,V_1}} > 1\,\mathrm{TeV}$

• at r2 l → 0: hard-Vj topologies

- •for pTVI > I TeV: hard-Vj topologies dominate over hard-VV
- •Jet veto $H_{
 m T}^{
 m jet} < \xi_{
 m veto} \; H_{
 m T}^{
 m lep}$ corresponds to

$$p_{T,V_2} \ge \frac{1 - \xi_{\text{veto}}}{1 + \xi_{\text{veto}}} p_{T,V_1} = \frac{2}{3} p_{T,V_1}$$
 for $\xi_{\text{veto}} = 0.2$

(violated by off-shell topologies)

• Jet veto results in phase-space dominated by hard-VV

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 $r_{21} = p_{\mathrm{T,V_2}}/p_{\mathrm{T,V_1}}$

Theory status for Tribosons [Slide thanks to M. Schönherr]

NLO QCD corrections trivial, known for on-shell and o -shell processes.

NLO EW on-shell corrections calculated by Hefei group '14-'17, WWW also by Dittmaier, Huss, Knippen '17.

NLO EW off-shell corrections more involved, up to $2 \rightarrow 6$ complexity (like VBS, just with more and competing resonances)

-
$$pp \to \gamma\gamma\gamma \, / \, \gamma\gamma\ell\nu \, / \, \gamma\gamma\ell\ell$$
 Greiner, Schönherr '17

- $pp \to 3\ell 3\nu$ ($\ell = e^{\pm}, \mu^{\pm}, 0/1/2$ SFOS channels, Schönherr '18 incl. WWW and WZZ topologies)

$$pp \to e^{\mp} \nu_e \, \mu^{\pm} \nu_{\mu} \, \tau^{\pm} \nu_{\tau} \, (WWW \text{ only})$$
 Dittmaier, Knippen, Schwan '19

- $pp \to \gamma 2\ell 2\nu$ ($\ell=e^\pm,\mu^\pm,0,1$ SFOS channels, Ju, Lindert, Schönherr tbp incl. γWW and γZZ topologies)

Generically, large contribution from photon-induced processes.

[Campanario et.al., '08]

- QCD correction driven by additional jet activity: VV+jet topologies with soft V
 - → 'giant K-factors'
 - → strong observable dependence
 - → NLO mandatory
- jet veto (pTcut = 50 GeV) reduces size and phase space dependence
 - → better: multi-jet merging

Triboson production: on-shell vs. off-shell

[M. Schönherr, 1806.00307]

 \bullet at large mlll and pT $_{II}$ large interference with other resonance structures

VS

Off-shell VVV production @ NLO EW

[M. Schönherr, 1806.00307]

• Very large cancellations of EW corr. in qq and q γ channels / highly observable dependent

Interplay of WWW and Wh[→ WW*]

[Slide thanks to M. Schönherr]

- due to interference, Wh cannot be treated as independent background, but is part of the signal
- → should not be subtracted

\Rightarrow measure signature (e.g. 3ℓ + MET) in fiducial volume

→ for limits on, e.g., AGCs: define fiducial region that has large WWW component, still measure signature, interferences can be as important as sought-after signal

Perturbative expansion: VBF-V, VBS-VV

Example: WW+2jets

VS.

$$d\sigma = d\sigma(\alpha_S^2 \alpha^4) + d\sigma(\alpha_S \alpha^5) + d\sigma(\alpha^6) + \dots$$

VBS-signal

Perturbative expansion: VBF-V, VBS-VV

Example: WW+2jets

- → separation formally meaningless at NLO
- → strictly well defined measurements: fiducial cross sections

QCD & EW ZZ+2jets @ NLO QCD + EW

long-term program for VBS@NLO

- QCD and EW ss-WWjj at NLO QCD+EW: [Biedermann, Denner, Pellen '16+'17]
- EW WZjj at NLO QCD+EW: [Denner, Dittmaier, Maierhöfer, Pellen, Schwan, '19]
- QCD and EW ZZjj at NLO QCD+EW: [Denner, Franken, Pellen, Schmidt, '20+'21]

EW ZZ+2jets @ NLO QCD + EW

•2 → 6 particles at NLO EW!

Order	$\mathcal{O}(\alpha^6) + \mathcal{O}(\alpha^7)$	$\mathcal{O}(\alpha^6) + \mathcal{O}(\alpha_{\rm s}\alpha^6)$	$\mathcal{O}(\alpha^6) + \mathcal{O}(\alpha^7) + \mathcal{O}(\alpha_s \alpha^6)$
$M_{\rm j_1 j_2} > 100$	$0\mathrm{GeV}$		
$\sigma_{ m NLO}[{ m fb}]$	0.08211(4)	0.12078(11)	0.10521(11)
$\delta [\%]$	-15.9	23.6	7.7
$M_{\rm j_1j_2} > 50$	$0\mathrm{GeV}$		
$\sigma_{ m NLO}[{ m fb}]$	0.06069(4)	0.07375(25)	0.06077(25)
$\delta [\%]$	-17.6	0.1	-17.5

- In the VBS phase-space EW mode receives:
- very small QCD corrections (percent level)
- ►O(20%) EW corrections

QCD & EW ZZ+2jets @ NLO QCD + EW

[Denner, Franken, Pellen, Schmidt; '21]

QCD and EW V+2jets @ NLO QCD + EW

[JML, S. Pozzorini, M. Schönherr; to appear]

- •QCD: negative K-factor (increasing for large mjj), uncertainty ~20-25%
- EW: up to -10% in multi TeV

- •QCD: very small K-factor at large mjj, uncertainty ~10% (no VBF approximation)
- EW: up to -20% in multi TeV