

What is Rivet?

- The "LHC standard" MC analysis toolkit
- More broadly a project to preserve the logic of
 HEP data analyses and further expt-pheno collaboration
- Code wise, a C++ core and Python tools
 - Fiducial / generator-independence emphasis
 - Integration with HepData
 - Transparent weight-stream handling
 - 1000+ analyses!
- Central to a community of analysis reinterpretation tools,
 linking experiment to theory
- But why?

L

We want to avoid physicists needing to repeatedly rediscover graph algorithms, conventions, pitfalls, physical/debug distinctions, ...

Lessons learned ...

- A simple/obvious idea, with surprising impact:
 - Reproducing a key plot (or not) is *powerful* ⇒ understand physics, communicate issues, improve MCs
 - A common language for pheno and experiment
- But...
 - "Obvious" to use partons, bosons, etc. direct from the event graph.
 - Frequently unphysical & depend on approximations. May not even exist!
 - ⇒ predict "real" observables, from well-defined final states
- Standardisation: boring but important
 - (physical) event format conventions, status codes, PDG particle numbering, weights ...
- Scalability
 - Lots of expensive operations are repeated: sharing calculations is essential

Physically safe analysis methods

Avoiding unstandardised event-graph features was pragmatic, but led to some genuine physical insights:

- refining the "fiducial" idea, defining unfolding targets
- Hadronisation as a "decoherence barrier"
 use the natural dividing line between the quantum-interfering hard process
 & semi-classical decays: ~no tempting partons!
- Bringing truth tagging closer to reco
 first releases used b-ancestry of jet constituents to set HF labels:
 too inclusive! ⇒ associate the hard-fragmenting, weakly-decaying B
- **Promptness/directness tests**don't identify a particle "from the hard process"; do it backward:
 Label as *indirect* via recursive checks for hadron parentage
- **Dressed leptons** we now primarily *dress* truth leptons with their photon halo

Common pitfalls

- Colour triplets are not final-state particles
 - MC event generators do not guarantee the physicality of a "final state top"
- Electroweak scale particles (W, Z, H) are not final state particles
 - Focus on the leptons and hadrons for the decay channel you care about
- Hidden vetoes
 - all important cuts should be reflected in the fiducial cross section definition.
 - e.g. a veto on isolated photons in a dilepton analysis may make no difference to the result when running on a SM sample which is LO in the electroweak coupling, but what happens if more precise calculation is used which may include EW radiation?
- Missing energy and neutrinos
 - explicit use of neutrino flavour and momentum is very problematic, especially when there's more than one neutrino in the event
 - better to use the particle-level missing transverse momentum instead, which correctly accounts for possible additional (BSM or other) sources of missing momentum

Designing the Rivet

Ease of use

- Big emphasis on "more physics, less noise"!
- Minimal boilerplate analysis code, HepData sync
- Event loop and histogramming basically familiar
- Tools to avoid having to touch the raw event graph.

Embeddable

- OO C++ library, Python wrapper, sane user scripts
- Generator independence: communication via HepMC
- Analysis routines factorised, and loaded as "plugins"

Efficient

Avoid recomputations via "projection" caching system

Physical

Measurements primarily from final-state particles only

The result

- As of Rivet v3.1.0 arXiv:1912.05451
- Streamlined set of tools from analysis coding to event processing to plotting (and other applications)
- And a key gateway to connect your analysis to theory (and back again)
 - integral part of MC validation on the experiments
- Let's review some of the early impacts...

Event generator tuning

Event generators all have dirty secrets.

Usually non-perturbative ones... O(30+) parameters

- First systematic hadron collider "tunes" of PYTHIA6 by Rick Field for CDF ~ 2001
 - Tune A, Tune D, Tune DW, etc. etc.
- Limited datasets, variation by hand
 - o Rivet and its analyses were a game-changer
 - You only know a model is incapable when you've scanned its whole parameter space...
 and then the argument is over
- The "Professor" tunes, 2008; and ...

More tuning...

It's getting hard to remember now, but pre-LHC the soft QCD uncertainties were *huge*

- Factor x2 uncertainty on 7 TeV σ_{tot}!
- Feed in to underlying event, pile-up, etc.
 - Tuning an essential task: better tunes
 ⇒ better analysis designs, better limits, ...
 - Impact: LEP and Tevatron analyses published for ~10 years suddenly got used! And cited...
 - ATLAS AMBT, AUET, AZ, A14 etc. tunes + CMS
 - Rapid responses to preliminary data,
 changes of model (e.g. Py8 for ATLAS pile-up)
 - Model development: matching & merging,
 addition of energy evolution
 & colour-reconnection to Herwig, ...

The state we're in

Version 3.1.0 crossed the 1000 analysis mark

A steady flow of analysis submissions, plus the occasional deluge of (mainly hadronisation) routines from Herwig!

- Official support from
 the LHC experiments is crucial
 - preservation = just part of how we do science; but still some way to go! Coverage monitoring:
- "New" features since the v1 vision: systematics multiweights, "perfect merging", heavy ions, detector smearing functions, analysis options

Multiweights and re-entry

- MC weight vectors allow expression of increasingly complex theory uncertainties. But a burden for analysis chains: have to propagate and correctly combine O(200) weight streams!
- Rivet 3: complex automatic handling of weights

 invisible to users: data objects look like histograms etc.
 but are secretly multiplexed
- Can now re-call finalisation to combine runs:
 RAW histogram stage preserves pre-finalize objects
 ⇒ "re-entrant" perfect data-object merging
 Key for e.g. pA/pp or W/Z ratios, + BSM recasting
- **Data types are important:** glimpses of a fully coherent separation of semantics from presentation

Rivet multiweights in action

ATLAS MC studies have been a significant driver of this feature

Weight-naming standardisation via MCnet (arXiv:2203.08230)

Heavy-ion physics preservation

- "Adding heavy-ion support" sounds trivial!
- Actually a stern test, with far-reaching impacts
 - HI observables often require centrality calibration curves: we need a 2-pass run. That wasn't planned.
 - And event/event correlations... centrality-binned!
 - \circ Need swappable definitions: few HI generators are general-purpose enough to do e.g. both forward $E_{\rm T}$ and jet quenching
- Paper: <u>arXiv:2001.10737</u>
- HI MC standards are also in flux: having a common tool enables discussion on common standards

Detector emulation

Detector smearing built on Rivet's projection system — for reco-level analyses

o developed based on Gambit ColliderBit experience: no need for "full fast-sim"

Rivet and BSM-search recasting

- Rivet's main emphasis isn't BSM direct searches,
 but there's no reason not to
 - lots of experiment experience and support
 - efficient scaling-up to hundreds of analyses,
 with distinct phase-space specific
 detector/efficiency functions
- Can we do for BSM preservation what we did for measurement analyses?
- Friendly competition, mainly from/with MA5
 - all good tools, all geared to getting your analysis into pheno studies asap

BSM from "Standard Model"

- Not being focused on direct searches doesn't mean no interest in BSM!
- Particle-level measurements can achieve high level of model-independence
 - o Careful definition of fiducial cross-section
 - Control distributions of "hidden variables" which are cut on
 - Reduce model sensitivity in unfolding.
- Rivet used directly in e.g.
 - TopFitter top quark EFT fits;
 - o at core of ATLAS VH EFT fits; and...
- Contur is getting particular uptake
 - Inject signal to "SM" measurements:
 if it'd been statistically distinct, the model is eliminated!
 - Rivet gives huge "synoptic" coverage:
 a new result with Rivet code can be in BSM fits within hours
 - see Jon's talk for more details.

The future of Rivet

- Vision: Rivet as a standard for "truth-level" observables, across collider physics
- Not just standalone, but as a library in pheno & experiment frameworks, too: standard MC definitions (cf. CMSSW), seamless systematics handling, etc.
- At its core: a physics-oriented system for physicists to compare MC predictions to one another and to data, on many simultaneous observables, in myriad ways ... we don't know all the use-cases yet!

Challenges:

- Extension of HepData and other community infrastructure for ever more precise data.
 Even our compressed data format is struggling with the volume of analyses and data.
 Work needed on multiweight-oriented data format and tools
- o Improved, modernised visualisation and exploration
- Connections to global (BSM) fitting tools
- Preserving MVAs: BDT and NN in vanilla C++

Getting and using Rivet

An analysis that's immediately available to the pheno community is 10x more useful ⇒ payback! In the past, key analyses were ignored due to the barrier to entry

As either a "user" or analysis author, the barrier is lower than ever: we recommend using our Docker images to get started

Tutorials available from the <u>Rivet website</u>, a walkthrough in the <u>Rivet3 paper</u>

Imitation is the highest form of flattery: copy an existing analysis!

```
$ docker pull hepstore/rivet-tutorial
Using default tag: latest
latest: Pulling from hepstore/rivet-tutorial
Digest: sha256:d077730d7b616722afe0ef2734a9a6799e4dabd0611798fc5ebf5ab52b8e25a8
Status: Image is up to date for hepstore/rivet-tutorial:latest
docker.io/hepstore/rivet-tutorial:latest
$ docker run -it hepstore/rivet-tutorial
root@31de38022200:/work#
root@31de38022200:/work# cat gg g1500 chi100 g-ttchi.cmnd
SUSY:all = on
SLHA:file = gg g1500 chi100 g-ttchi.slha
Main:writeHepMC = on
Main:runRivet = on
Main:analyses = MC JETS
root@31de38022200:/work#
root@31de38022200:/work# pythia8-main93 -c gg g1500 chi100 g-ttchi.cmnd -n 2000
```


Summary

- Rivet arose from HERA experiment/MC author collaboration, in time for the LHC
- Like HZTool, its existence has spurred many other experiment/pheno activities, e.g.
 - MC development, validation and quality control
 - Tuning
 - o PDF studies, EFT, global BSM fits...
 - Heavy-ion methods
 - And teaching / UG projects
- An accelerator for analysis impact: immediate entry to many theory studies. Lots of fun collaborations!
 (cf. new LPCC RAMP initiative: exposure for good practice)
- As we head into another LHC era, there will surely be more use-cases for analysis recycling. Join in!

Backup

MC generation

- MC generation is where theory meets experiment
 - The fundamental pp (etc.) collision, sans detector
- Components of an "exclusive" event-generator chain:
 - QFT matrix element sampling at fixed order in QCD etc.
 - Dressed with approximate collinear splitting functions, iterated in factorised Markov-chain "parton showers"
 - FS parton evolution terminated at Q ~1 GeV: phenomenological hadronisation modelling
 - Mixed with multiple partonic interaction modelling
 - Finally particle decays, and other niceties
- Modern HEP is powered by shower MCs
 - The main mechanism for translating theory to experimental signatures, from QCD to BSM
 - Generally very complex modelling and output

