



Fakultät Mathematik und Naturwissenschaften, Institut für Kern- und Teilchenphysik

## Non-accelerator neutrino physics



## **Nobel price of physics 2015**

22.3. 2016, IOP HEPP Meeting Brighton

Kai Zuber Institut für Kern- und Teilchenphysik





## Contents





- General remarks
- Absolute mass measurements
  - Beta decay
  - Double beta decay
  - Cosmology
- Astrophysical neutrinos
- Summary and outlook



### Universal neutrino spectrum





Appearance searches : New flavour appears not produced at source Disappearance searches: Less neutrinos than expected from source



# **Neutrino mixing**



|                   |                                                                           | www.nu-fit.                                                          | org                                               |                                                              |                     |
|-------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------|---------------------|
| Leptons           |                                                                           |                                                                      |                                                   | NuFIT 2.0 (                                                  | 2014)               |
| $ U _{3\sigma} =$ | $egin{pmatrix} 0.801 	o 0.84 \ 0.225 	o 0.51 \ 0.246 	o 0.52 \end{cases}$ | $\begin{array}{ccc} 5 & 0.514 \\ 7 & 0.441 \\ 9 & 0.464 \end{array}$ | ightarrow 0.580  ightarrow 0.699  ightarrow 0.713 | 0.137  ightarrow 0 $0.614  ightarrow 0$ $0.590  ightarrow 0$ | ).158).793<br>).776 |
| Compare to        | <b>X</b>                                                                  |                                                                      |                                                   |                                                              | /                   |
| Quarks:           | $ V_{\rm CKM}  \simeq$                                                    | <pre>( 0.97419<br/>0.2256<br/>0.00874</pre>                          | 0.2257<br>0.97334<br>0.0407                       | 0.00359<br>0.0415<br>0.999133                                |                     |

# **Neutrino mass schemes**



almost degenerate neutrinos m<sub>1</sub>≈ m<sub>2</sub>≈ m<sub>3</sub>



# The twofold way....



- ★ Precision determination of mixing matrix elements (PMNS), CP violation in lepton sector
- ★ Absolute neutrino mass measurement





## Fermi theory of weak interaction

101

E. Fermi (1934)

#### Versuch einer Theorie der $\beta$ -Strahlen. I<sup>1</sup>). Von E. Fermi in Rom.

#### Mit 3 Abbildungen. (Eingegangen am 16. Januar 1934.)

Eine quantitative Theorie des  $\beta$ -Zerfalls wird vorgeschlagen, in welcher man die Existenz des Neutrinos annimmt, und die Emission der Elektronen und Neutrinos aus einem Kern beim  $\beta$ -Zerfall mit einer ähnlichen Methode behandelt, wie die Emission eines Lichtquants aus einem angeregten Atom in der Strahlungstheorie. Formeln für die Lebensdauer und für die Form des emittierten kontinuierlichen  $\beta$ -Strahlenspektrums werden abgeleitet und mit der Erfahrung verglichen.

#### 7. Die Masse des Neutrinos.

Durch die Übergangswahrscheinlichkeit (32) ist die Form des kontinuierlichen  $\beta$ -Spektrums bestimmt. Wir wollen zuerst diskutieren, wie

diese Form von der Ruhemasse  $\mu$  des Neutrinos abhängt, um von einem Vergleich mit den empirischen Kurven diese Konstante zu bestimmen. Die Masse  $\mu$ ist in dem Faktor  $p_o^2/v_\sigma$  enthalten. Die Abhängigkeit der Form der Energieverteilungskurve von  $\mu$  ist am meisten ausgeprägt in der Nähe des Endpunktes



der Verteilungskurve. Ist  $E_0$  die Grenzenergie der  $\beta$ -Strahlen, so sieht man ohne Schwierigkeit, daß die Verteilungskurve für Energien E in der Nähe von  $E_0$  bis auf einen von E unabhängigen Faktor sich wie

$$\frac{p_{\sigma}^{2}}{v_{\sigma}} = \frac{1}{c^{3}} \left( \mu c^{2} + E_{0} - E \right) \sqrt{(E_{0} - E)^{2} + 2 \mu c^{2} (E_{0} - E)}$$
(36)





## KATRIN



#### The next generation (ultimate spectrometer?): Aimed sensitivity of 0.2 eV



## KATRIN- The next step







## Take the long way home...





$$^{163}_{67}\text{Ho} \rightarrow ^{163}_{66}\text{Dy}^* + \nu_e$$



$$^{163}_{66}\text{Dy}^* \rightarrow ^{163}_{66}\text{Dy} + E_{\text{C}}$$

Endpoint of internal bremsstrahlungs spectrum

Current bound : m < 225 eV

P.F. Springer et al., Phys. Rev. A 35 (1987)

## EC signal







## Are neutrinos (very) special?

#### intrinsic particle-antiparticle symmetry of neutrinos?





- $(A,Z) \rightarrow (A,Z+2) + 2 e^- + 2 \overline{v_e}$   $2v\beta\beta$
- (A,Z) → (A,Z+2) + 2 e<sup>-</sup>



Unique process to measure character of neutrino



The smaller the neutrino mass the longer the half-life

0νββ

Neutrino mass measurement via half-life measurement

## Requires half-life measurements well beyond 10<sup>20</sup> yrs!!!!

## Example - Ge76





#### Only 35 isotopes in nature are able to do that!

IOP HEPP Brighton, 22.3.2016



## Any $\Delta L=2$ process can contribute to $0\nu\beta\beta$



- **R**<sub>p</sub> violating SUSY V+A interactions
- Extra dimensions (KK- states) Leptoquarks
  - **Double charged Higgs bosons**
  - Compositeness
  - Heavy Majorana neutrino exchange
  - Light Majorana neutrino exchange

1 / 
$$T_{1/2}$$
 = PS \* NME<sup>2</sup> \* $\epsilon^2$ 

...



## Light Majorana neutrinos



## 3 Flavour mixing (PMNS)



#### Neutrinos mix as oscillation experiments have shown, hence

Leptonic mixing (PMNS) matrix (including Majorana character)





### Mass hierarchies and DBD



IOP HEPP Brighton, 22.3.2016

## The search for $0\nu\beta\beta$



## or



This is the 50 meV option, just add 0's to moles and kgs if you want smaller neutrino masses

 $T_{1/2} = In2 \cdot a \cdot N_A \cdot M \cdot t / N_{\beta\beta} (\tau_{>>T})$  (Background free) For half-life measurements of 10<sup>26-27</sup> yrs 1 event/yr you need 10<sup>26-27</sup> source atoms This is about 1000 moles of isotope, implying about 100 kg Now you only can loose: nat. abundance, efficiency, background, ...

## Spectral shapes



## $0\nu\beta\beta$ : Peak at Q-value of nuclear transition



## Perfect world experiment





- No background
- $\bullet$   $\delta$  function as peak
- ✤ 100 % abundance
- ✤ 100% detection efficiency
- Infinite measuring time
- ✤ Infinite mass

$$T_{1/2}^{-1} \propto a \varepsilon \sqrt{\frac{Mt}{\Delta EB}}$$

#### Life is easy, the rest is just details



## $0\nu\beta\beta$ decay rate scales with $Q^5 \rightarrow \mbox{ only those with } Q{>}2000 \ keV$

| Isotope | Nat.<br>abund. (%) | Q-values 2016    |               |
|---------|--------------------|------------------|---------------|
| Ca-48   | 0.187              | 4262.96 ± 0.84   | Candles       |
| Ge-76   | 7.44               | 2039.006 ± 0.050 | GERDA, Majora |
| Se-82   | 8.73               | 2997.9 ± 0.3     | SuperNEMO, LU |
| Zr-96   | 2.80               | 3356.097 ± 0.086 |               |
| Mo-100  | 9.63               | 3034.40 ± 0.17   | MOON, AMore   |
| Pd-110  | 11.72              | 2017.85 ± 0.64   |               |
| Cd-116  | 7.49               | 2813.50 ± 0.13   | COBRA         |
| Sn-124  | 5.79               | 2292.64 ± 0.39   | Tin.Tin       |
| Te-130  | 33.80              | 2527.518 ± 0.013 | CUORE, SNO+   |
| Xe-136  | 8.9                | 2457.83 ± 0.37   | nEXO, KamLAN  |
| Nd-150  | 5.64               | 3371.38 ± 0.20   | MCT, SuperNE  |

#### 11 isotopes of interest

GERDA, Majorana SuperNEMO, LUCIFER MOON, AMore COBRA Tin.Tin CUORE, SNO+ nEXO, KamLAND-Zen, NEXT, XMASS MCT, SuperNEMO(?)

#### There is no super-isotope!

Master equation







#### **Matrix element**

Rescaled as people use different  $g_A$  (1-1.25) and  $R_0$  (1.0-1.3 fm)



A. Dueck, W. Rodejohann, K. Zuber, arXiv:1103.4152, PRD 83, 113010 (2011)

#### **Several new techniques applied in last years** Kai Zuber

IOP HEPP Brighton, 22.3.2016



- Sum energy of both electrons
- Single electron spectra and opening angle
- Detection of daughter ion



#### All low background











DRESDEN

Exzellenz aus Wissenschaft und Kultur

200 kg of enriched (80%) Xe-136 at hand

Current half-life limit on 0nu decay :  $T_{1/2} > 1.1 \times 10^{25}$  years (90%CL)

J. B. Albert et al., Nature 510,229 (2014)



First observation of 2nu decay of Xe-136, N. Ackerman et al., PRL 107, 212501 (2011)

Future option: Barium tagging



#### KamLAND - Zen





K. Zuber



## GERDA-Principal Setup



#### Idea : Running bare Ge crystals in LAr





K. Zuber

**The Gerda experiment for the search of** *0νββ* **decay in** <sup>76</sup>**Ge** Eur. Phys. J. C (2013) 73:2330



#### Phase I data taking















Pulse shape discrimination: M. Agostini et al. Eur. Phys. J. C 71,2583 (2013) Result Phase 1: M. Agostini et al., PRL 111, 122503 (2013)



K. Zuber



#### Talk by X. Liu



The goals of SuperNEMO :

- 1. Build on the experience of the extremely successful NEMO-3 experiment.
- 2. Use the power of the tracking-calorimeter approach to identify and suppress backgrounds. This will yield a zero-background experiment in the first (Demonstrator Module) phase.
- 3. Prove that a 100 kg scale experiment can reach the inverted mass hierarchy (~50 meV) domain.
- 4. In the event of a discovery by any of the next-generation experiments, demonstrate that the tracking-calorimeter approach is by far the best one for characterising the mechanism of  $0\nu\beta\beta$  decay.

K. Zuber



- World's best and/or first measurement of 2-neutrino half-lives for 7 isotopes !
- Publication of 2 of the most interesting isotopes (<sup>48</sup>Ca, <sup>150</sup>Nd) is imminent.
  - Both are these measurements are UK PhD theses.







# SNO+ @ SNOLAB



.

1. A. Barriston

#### Massive detector provides self shielding from external backgrounds

#### <sup>130</sup>**Te**

: Large natural isotopic abundance (34%), so no enrichment needed to deploy tonne-scale of isotope

: High half-life of 2v mode (7.0x10<sup>20</sup>yr) relative to possible 0v transition compared to other isotopes

Liquid scintillator

- : Can be purified on-line
- : Loading can be changed, scalable
- : Fast timing allows rejection of several time-correlated radioactivity backgrounds







## **SNO+** Detector

# ★ 12m diameter Acrylic Vessel Hold down rope net ★ 780 tonnes scintillator





# ★ 7ktonnes water shielding★ ~9300 8inch PMT array

Kai Zuber



**Diol Complexes** 





New method to load Te with higher light yield, lower backgrounds, easier to implement.







 $T_{\frac{1}{2}}$  > 1.9 × 10<sup>26</sup> years with 5 years data, 0.5% loading

Immediately competitive with 1 year of data

For more info see talk by E. Leming

## The future...





Can exist if neutrinos have a non-vanishing mass
 Should be Dirac neutrino







#### Idea: Increases cross section at low E



 $\mu_v < 2.9 \times 10^{-11} \mu_B (90\% CL)$ 

Beda et al. 2013

## Idea: Increases energy loss of stars (tip-RGB stars, He-flash)



# **Power Spectrum**



# Now you see me... Now you don't

$$\Sigma = m_1 + m_2 + m_3$$

m<sub>v</sub> = 0 Planck mission15, Lesgourges, Pastor14, Palanque14

. . .



 $m_{v} > 0$ 

Beutler14, Battye14, Sanchez13,

Correlation with other cosmological parameters, model dependent

# Summary

There are basically 3 ways to learn about the absolute neutrino masses:

Beta decay: 
$$m_{\beta} = \left[c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2\right]^{\frac{1}{2}}$$
 (most secure)

Double beta decay:  $m_{\beta\beta} = \left| c_{13}^2 c_{12}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3} \right|$  (only if neutrnos are Majorana particles)

Cosmology: 
$$\Sigma = m_1 + m_2 + m_3$$

(model dependent, corrrelations)

| Phenomenon          | Measure                                                             | Sensitivity | Dirac vs Majorana |  |
|---------------------|---------------------------------------------------------------------|-------------|-------------------|--|
| Flavor oscillations | $\Delta m_{ij}{}^2 = m_i{}^2 - m_j{}^2$                             |             | No                |  |
| β-decay             | $< m_{\beta} >^2 = \sum m_i^2  U_{ei} ^2$                           | 0.2 eV      | No                |  |
| Cosmology           | $M = \sum m_i^i$                                                    | 0.1 eV      | No                |  |
| Ονββ                | $< m_{\beta} > \stackrel{i}{=} \sum_{i} m_i  U_{ei} ^2 e^{i\alpha}$ | 0.01eV      | Yes               |  |
|                     | ı                                                                   |             |                   |  |

No value yet, but masses seem to be below 1 eV (electron: 511000 eV)

# \* Statistics still matters **\*** Statistics still matters



## The future



- ★ Absolute neutrino mass measurement
- ★ Which mass scheme?
- ★ Understanding mixing pattern
- $\star$  Three flavour analysis
- ★ Is there CP-violation in the lepton sector (is it observable)?
- ★ Neutrino astronomy
- ★ Supernova neutrinos
- ★ Geoneutrinos
- ★ Are there sterile neutrinos?
- ★ Unexpected things?





