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1.95 K neutrino 
background 

+ accelerators 
+ nuclear decays 

Universal neutrino spectrum
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Search for oscillations 

Appearance searches : New flavour appears not produced at source 
Disappearance searches: Less neutrinos than expected from source 

€ 

θ12,θ13,Δm12
2

€ 

θ23,Δm23
2
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Neutrino mixing	


Leptons : 

Compare to 

Quarks:  

www.nu-fit.org 
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Neutrino mass schemes	


• almost degenerate neutrinos m1≈ m2≈ m3 

• hierarchical  
  neutrino 
  mass schemes 

What is the absolute  neutrino mass? 

0 
? ?



The twofold way.... 

   Precision determination of mixing matrix elements 
(PMNS), CP violation in lepton sector

   Absolute neutrino mass measurement
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Fermi theory of weak interaction 

:  

E. Fermi  (1934) 
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KATRIN 

The next generation (ultimate spectrometer?): Aimed sensitivity of 0.2 eV 
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KATRIN- The next step 
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Take the long way home... 
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The case of Ho-163 

Endpoint of internal bremsstrahlungs spectrum 

Current bound : m < 225 eV 

P.F. Springer et al., Phys. Rev. A 35 (1987) 
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EC signal 
Very low Q-value allows only M-capture and higher shells 

Usage af cryobolometers (ECHO, Holmes) 

ECHO 
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4 ν states 
lepton number 
conservation ΔL = 0 
neutrino ≠ antineutrino 

νD 

CPT CPT 

Lorentz 

νL 

intrinsic particle-antiparticle symmetry of neutrinos? 

νD and νM only distinguishable  
if mν ≠ 0 

νM 
2 ν states 
lepton number 
violation ΔL = 2 

CPT 

Lorentz 

Are neutrinos (very) special? 
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Double beta decay  

•   (A,Z) → (A,Z+2) +2 e- + 2νe          2νββ  - 
•   (A,Z) → (A,Z+2) + 2 e-                  0νββ  

Unique process to measure character of neutrino 

The smaller the neutrino mass the 
longer the half-life 

Neutrino mass measurement via 
half-life measurement 

Requires half-life measurements well beyond 1020 yrs!!!! 
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Example - Ge76 

Only 35 isotopes in nature are able to do that! 
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0νββ 

Any ∆L=2 process can contribute to 0νββ  

Rp violating SUSY  
V+A interactions 
Extra dimensions (KK- states) 
Leptoquarks 
Double charged Higgs bosons 
Compositeness 
Heavy Majorana neutrino exchange 
Light Majorana neutrino exchange 
... 

1 / T1/2 = PS * NME2 *ε2 
Nice interplay with LHC 
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Light Majorana neutrinos 

€ 

ε ≡ mν = Uei
2

i
∑ mν i

Schechter and Valle 1982:  

Independent of mechanism for neutrinoless DBD 
Majorana neutrino mass will appear in higher order! 

1 / T1/2 = PS * NME2 * (<mν> / me)2 
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3 Flavour mixing (PMNS) 

€ 
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mν =| Uei
2
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∑ mν i

|=| c12
2 c13

2m1 + s12
2 c13

2 ei2α1m2 + s13
2 ei2(α 2 −δ )m3 |

Leptonic mixing  (PMNS) matrix (including Majorana character) 

sin2 2θ23 > 0.9 (90%CL), best fit θ23 =45° 	


sin2 2θ13  = 0.09 (90%CL), θ13 = 9°  	


normal	
 inverted	


Neutrinos mix as oscillation experiments have shown, hence 

solar reactor atmospheric 

€ 

sin2θ12 = 0.32,θ12 = 34°.06−0.84
+1.16

From oscillation experiments 
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1025 yrs 

1026 yrs 

1027 yrs 

1028 yrs 

Mass hierarchies and DBD 

normal	
 inverted	


Claim of evidence 

1.) Is the claimed evidence correct?    
  GERDA phase I, Xe-experiments 

2.) Can we probe the inverted hierarchy? 

3.)  What about the normal hierarchy? 

T1/2 = 1.19 x 1025 yr 

H.V. Klapdor-Kleingrothaus  et al. 
Phys. Lett. B  586, 198 (2004) 

76Ge  1 

2 

3 
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The search for 0νββ 

or 
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Τ1/2 = ln2 • a • NA• M • t / Nββ   (τ>>T)   ( Background free) 

For half-life measurements of 1026-27 yrs 

1 event/yr you need  1026-27 source atoms 

This is about 1000 moles of isotope, implying about 100 kg 

Now you only can loose: nat. abundance, efficiency, background, ...  

Back of an envelope 

This is the 50 meV option, just add 0‘s to moles and kgs if you want smaller 
neutrino masses  
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Spectral shapes 

Sum energy spectrum of both electrons 

0νββ: Peak at Q-value of nuclear transition  

Measured quantity: Half-life 

Energy resolution 

Background 
€ 

T1/ 2
−1 ∝ aε Mt

ΔEB

€ 

T1/ 2
−1 ∝ aεMt

€ 

mν ∝
ΔEB
Mt

4

Experimental sensitivity depends on  

     (BG limited) 

      
    (BG free) 

If background limited 

1 / T1/2 = PS * NME2 * (<mν> / me)2 
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Perfect world experiment 

  No background
  δ function as peak
  100 % abundance
  100% detection efficiency
  Infinite measuring time
  Infinite mass

Life is easy, the rest is just details 
€ 

T1/ 2
−1 ∝ aε Mt

ΔEB
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Experimental approaches 

Candles 

GERDA, Majorana 

SuperNEMO, LUCIFER 

COBRA 

CUORE, SNO+ 
nEXO, KamLAND-Zen, NEXT, XMASS 

MCT, SuperNEMO(?) 

MOON, AMore 

11 isotopes of interest 

Tin.Tin 

Isotope Nat. 
abund. (%)  

Q-values 2016 

Ca-48  0.187 4262.96 ± 0.84 

Ge-76 7.44 2039.006 ± 0.050 

Se-82 8.73 2997.9 ± 0.3 

Zr-96 2.80 3356.097 ± 0.086 

Mo-100 9.63 3034.40 ± 0.17 

Pd-110 11.72 2017.85 ±  0.64 

Cd-116 7.49 2813.50 ± 0.13 

Sn-124 5.79 2292.64 ± 0.39 

Te-130 33.80 2527.518 ± 0.013 

Xe-136 8.9 2457.83 ± 0.37 

Nd-150 5.64 3371.38 ± 0.20 

There is no super-isotope! 
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Master equation 

1 / T1/2 = PS * NME2 * (<mν> / me)2 

Measurement Exact 
calculation 

Complex  
calculations 

Quantity of  
interest 

Nuclear Physics 

J. Kotila, F. Iachello, PRC  034316 (2012) 
S. Stoica, M. Mirea,  arXiv:1307.0290 

Severe nuclear structure issue 
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A. Dueck, W. Rodejohann, K. Zuber, 
arXiv:1103.4152, PRD 83, 113010 (2011) 

Rescaled as people use different gA (1-1.25) and R0 (1.0-1.3 fm) 

Matrix element 

Several new techniques applied in last years 
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Signatures and approaches 

- Sum energy of both electrons 
- Single electron spectra and opening angle 
- Detection of daughter ion 

Source = detector Source ≠ detector 

All low background 

- Semiconductors 
- Cryogenic bolometers 
- Scintillators 
-  Liquid Noble gases 

- TPCs (foils) 
- Scintillators (foils) 
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The fantastic 4 Because they‘ve started 



200 kg of enriched (80%) Xe-136 at hand 

EXO-200 

Future option: Barium tagging 

First observation of 2nu decay of Xe-136, 
N. Ackerman et al., PRL  107, 212501 (2011) 

Current half-life limit on 0nu decay :  
T1/2  > 1.1  x 1025 years (90%CL) 
J. B. Albert et al., Nature 510,229 (2014) 

In conflict with positive claim for almost all 
matrix element calculations 

Uncertainties due to conversion 
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KamLAND - Zen 

Using 400 kg of Xe (91.7% enriched in Xe-136) 

Upgrade to 1 ton enriched Xe planned soon 

A Gando et al., PRC 85,045504 (2012)  

T1/2  > 1.9  x 1025 years (90%CL) 
A. Gando, PRL 110, 062502 (2013)  
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GERDA-Principal Setup 

Idea : Running bare Ge crystals in  LAr 

9 

Talk A. Kirch 
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GERDA opened window in 
June collaboration meeting 

Phase I data taking 
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Phase I data taking 

16.7.2013 
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Background model 
(flat background in 
region of 200 keV 
around signal after 
removing lines) 

Phase I results 

Pulse shape discrimination: M. Agostini et al. Eur. Phys. J. C  71,2583 (2013)  

Result Phase 1: M. Agostini et al., PRL 111, 122503 (2013) 
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Overview of SuperNEMO 

The goals of SuperNEMO : 

1.  Build on the experience of the extremely successful NEMO-3 experiment. 

2.  Use the power of the tracking-calorimeter approach to identify and suppress 
backgrounds. This will yield a zero-background experiment in the first 
(Demonstrator Module) phase. 

3.  Prove that a 100 kg scale experiment can reach the inverted mass hierarchy (~50 
meV) domain.  

4.  In the event of a discovery by any of the next-generation experiments, demonstrate 
that the tracking-calorimeter approach is by far the best one for characterising the 
mechanism of 0νββ decay. 

Imperial, Manchester, UCL, 
UCL-MSSL, Warwick 

Talk by X. Liu 
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NEMO-3 2νββ 
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larger and smaller energy electrons divided by their sum641

shown in Fig. 7(d). The opening angle between the two642

electrons is also shown in Fig. 7(c). There is good agree-643

ment between data and the simulation for all of these dis-644

tributions, which provides confidence in both the overall645

background model and the modelling of these decays and646

the detector response.647

As described in Sec. III, the normalizations of all sig-648

nal and background contributions are obtained using a649

binned likelihood fit to the observables from each de-650

cay channel listed in Table I. The only constraints in651

the fit are associated with the internal 214Bi background,652

which is constrained to the average activity measured in653

the 1e1↵ and 1e1� channels, and the 152Eu background,654

which is constrained to the rate measured by the HPGe655

detector. The contribution from radioactive decays in the656

source foils on either side of the 150Nd foil are fixed using657

the rates measured in dedicated analyses of these foils.658

Allowing their total contribution to float with all other659

contributions fixed results in a reduction of the neighbor-660

ing foil activity by 23%. This is translates into a 0.5%661

e↵ect on the 2⌫�� decay rate.662

All other background rates and the 2⌫�� decay rate are663

fitted freely. The best fit activities and expected num-664

bers of events in the signal channel from each background665

source are listed in Table II. The best fit expected num-666

ber of events in the 2e channel for 150Nd is 2232.2 ± 52.5667

(stat.) evts, where the uncertainty is propagated from the668

likelihood fit. Given the 2⌫�� decay selection e�ciency669

of 3.87% and an exposure of 0.19 kg·yr, the 2⌫�� decay670

half-life for 150Nd is measured to be671

T 2⌫
1/2 = [9.27± 0.22 (stat.) +0.60

�0.58 (syst.)]⇥ 1018yrs, (3)672

using Eq. 2, with a signal-to-background ratio of673

S/B = 3.94.674

B. Systematic uncertainties675

Several sources of systematic uncertainty for the mea-676

surement of the 2⌫�� decay half-life are investigated.677

The largest source of uncertainty is associated with the678

absolute normalization of the 2e reconstruction e�ciency.679

This uncertainty is estimated through the comparison680

of 207Bi calibration source activities measured with the681

NEMO-3 detector and an HPGe detector. Using the682

2e(N)� channel to measure these sources yields activi-683

ties that are in agreement with the HPGe measurements684

to within ±5.6%. Therefore, we are confident in our over-685

all normalization of ��-decay events to within this same686

±5.6%.687

Additional sources of uncertainty on the 2e reconstruc-688

tion e�ciency are also considered, such as the e↵ects in-689

correct simulation of energy loss in the source foil and690

bremsstrahlung radiation. New MC simulations are pro-691

duced with these various parameters altered within their692

expected uncertainty, and the resulting e↵ects on the693

2⌫�� decay half-life are found to be on the order of 1%694
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FIG. 6. The total energy distribution from the two electrons
in the signal channel. The data are compared to simulation,
where the normalization of simulated events reflects the best
fit activity for each component of the background model listed
in Table II. Figure (b) shows the high energy tail of the
2⌫�� spectrum in more detail. The signal shapes for the mass
mechanism and RHC are shown with arbitrary normalizations
to highlight the region of interest, where the main background
comes from the decay of 208Tl.

or less for each of the individual sources of uncertainty695

(See Table III).696

The 150Nd source foil was the thinnest foil produced697

for the NEMO-3 experiment, and the composite powder698

itself was of very good quality with fine granularity. Nev-699

ertheless, there remains some level of uncertainty about700

the homogeneity of the source foil density. The e↵ects701

of these uncertainties are assessed by varying the thick-702

ness of the source foil within the simulation, and through703

numerical calculations given the particulate size in the704

powder. The e↵ects from these uncertainties are found705

•  World’s best and/or first measurement of 2-neutrino half-lives for 7 isotopes ! 

•  Publication of 2 of the most interesting isotopes (48Ca, 150Nd) is imminent.  

  Both are these measurements are UK PhD theses. 
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SNO+ @ SNOLAB 
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Massive detector provides self shielding from external backgrounds 

130Te 
 : Large natural isotopic abundance (34%), so no enrichment needed to deploy tonne-scale of isotope  
 :  High half-life of 2ν mode (7.0x1020yr) relative to possible 0ν transition compared to other isotopes 

Liquid scintillator 
 : Can be purified on-line  
 : Loading can be changed, scalable  
 : Fast timing allows rejection of several time-correlated radioactivity backgrounds  

UK groups: Lancester, Liverpool, Oxford, QMUL, Sheffield, Sussex  
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SNO+ Detector 

42 

 12m diameter Acrylic Vessel  Hold down rope net
 780 tonnes scintillator

 + Telluric acid

 7ktonnes water shielding
 ~9300 8inch PMT array
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Diol Complexes 

43 
New method to load Te with higher light yield, lower 
backgrounds, easier to implement.  
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SNO+ 0νββ Sensitivity 

Live time (y)
1 2 3 4 5 6 7 8 9 10

 (y
) s

en
si

tiv
ity

ν0 1/
2

T

2610

T½ > 1.9 × 1026 years with  
5 years data, 0.5% 
loading 

Immediately competitive 
with 1 year of data 

For more info see talk by     
E. Leming 



or 

The future... 
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Magnetic moment of neutrino 

 Can exist if neutrinos have a non-vanishing mass 
 Should be Dirac neutrino 

Marciano, Shrock, Lee, Fujikawa,Sanda 
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Magnetic moment searches GEMMA vs. astrophysics 

Beda et al. 2013 

€ 

µν < 2.9 ×10−11µB (90%CL)

€ 

µν < 2.2 ×10−12µB (90%CL)

Idea: Increases cross section at low E Idea: Increases energy loss of stars 
(tip-RGB stars, He-flash)  

Arceo-Diaz et al. 2015 



Power Spectrum 



Now you see me... 
Now you don‘t  

mν = 0 
mν > 0 

Beutler14, 
Battye14, 
Sanchez13, 
.... 

Planck mission15, 
Lesgourges, 
Pastor14, 
Palanque14 
... 

Correlation with other cosmological parameters, model dependent 



Summary 
There are basically 3 ways to learn about the absolute neutrino masses: 

Beta decay: 

Double beta decay: 

Cosmology: 

(most secure) 

(only if neutrnos are Majorana particles) 

(model dependent, corrrelations) 

No value yet, but masses seem to be below 1 eV (electron: 511000 eV) 
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New future infrastructures 
  Statistics still matters

10 km3 detector at Antarctica 20 kton liquid scintillator in China 

1 Megaton water detector in Japan 
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The future 

  Absolute neutrino mass measurement 
  Which mass scheme?
  Understanding mixing pattern
  Three flavour analysis
  Is there CP-violation in the  

lepton sector (is it observable)?
  Neutrino astronomy
  Supernova neutrinos
  Geoneutrinos 
  Are there sterile neutrinos?
  Unexpected things?
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Always expect the unexpected 


