Future upgrades to the LHC

Alex Tapper

IOP Institute of Physics **Joint annual HEPP and APP conference** 21–23 March 2016, University of Sussex, Brighton, UK

- Physics motivation
- Accelerator overview
- Detector upgrades
- Summary

London LHC Run 1 and Run 2 (so far...)

Great success in Run 1...

... and a strong start to Run 2

Imperial College Future physics: Higgs London

- Measurements of Higgs will play a big role in future
- Upgraded LHC is a *Higgs factory*
 - Run 1 @(1000) Higgs bosons at LHC
 - Upgrade factor 4-10 better measurements than today
 - Millions of events in all production modes
 - Access to rare decays of Higgs

	Total Higgs Bosons
LHC Run 1	660k
HL-LHC, 3000 fb ⁻¹	170M
VBF (all decays)	13M
ttH (all decays)	1.8M
$H \rightarrow \gamma \gamma$	390k
H → Zγ	230k
$H \rightarrow \mu \mu$	37k
H→J/ψγ	400
HH (all)	121K
$HH \rightarrow WWWW$	9200
HH → bbγγ	320
$HH \rightarrow \gamma \gamma \gamma \gamma$	1

Imperial College Future physics: Higgs London

- Measurements of Higgs couplings
 - Answering the question, *is this the SM Higgs?*

- Requires great performance across the board
 - Electrons, muons, taus, forward jets, b-tagging, trigger, MET....
- IOP, Joint Annual HEPP and APP Conference, 21-23 March 2016, Univ. of Sussex. 5

Express the production and decay of the Higgs in terms of deviation from SM coupling

Imperial College Future physics: Higgs London

- Scaling of signal and background yields as:
 - **Scenario1** systematic uncertainties remain the same: conservative
 - **Scenario 2** theoretical uncertainties scaled by $\frac{1}{2}$: expt. systematic uncertainties scaled by $1/\sqrt{L}$

Example beyond the Standard Model theories predict up to ~5% deviation

Imperial College Future physics: VV scattering

- Without the Higgs VV scattering would violate unitarity
 - Complementary probe of EWSB to direct Higgs measurements
 - Example ZZ scattering to 4 leptons
 - Low cross section but cleanest channel
 - 30% with 300 fb⁻¹
 - 10% with 3000 fb⁻¹
 - Requires excellent detector performance
 - VBF signature (forward jets), pile up control
 - Boosted decay of V to leptons or jets (substructure)
 - ...

unitarity Joint State State States Higgs measurements

More than 95% of the matter-energy in the Universe is of unknown origin!

IOP, Joint Annual HEPP and APP Conference, 21-23 March 2016, Univ. of Sussex. 8

Future physics: Dark Matter

- What can the LHC contribute?
- Complementary to direct detection experiments and observations

Imperial College Future physics: Dark Matter London

- How do you observe something invisible?
 - Monojet (and other) events

- Large gains with 300 fb⁻¹ to 3000 fb⁻¹
- Requires excellent performance for jets and missing energy
- IOP, Joint Annual HEPP and APP Conference, 21-23 March 2016, Univ. of Sussex. 9

Buchmüller et al. arXiv:1407.8257

Imperial College Future physics: SUSY London

- Why we love supersymmetry...
 - Hierarchy problem

Dark Matter candidate

Jnification

$$\Delta m_{H}^{2}=rac{\lambda_{S}}{16\pi^{2}}\left[\Lambda^{2}-2m_{S}^{2}ln\,rac{\Lambda}{m_{S}}
ight]$$

SM matter

Dark Energy

Future physics: SUSY

- Natural SUSY
 - $M_{stop} < ~1 \text{ TeV}$
 - Constraints on sbottom and gluino
 - Maybe still alive with 300 fb⁻¹?

- Electroweak production of SUSY
 - Lower cross sections than strong production \rightarrow needs higher luminosity
 - Also shows effect of detector degradation
 - WH channel: lepton, MET and 2 b-tags

Imperial College Physics summary London

- Broad physics programme
 - Precision SM (including Higgs) measurements
 - Searches for new physics
- Complementary to other (potential) colliders
- Highlighted key areas for detector performance

Bottom line: will need to maintain current high level of detector performance

LHC: Introduction

Imperial College LHC: Running conditions London

- Close to design luminosity reached already
 - $7 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1} vs 1 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
 - With 50 ns bunch spacing vs nominal 25 ns
 - Higher than design pile up already
 - Integrated luminosities up to 0.3 fb⁻¹ / day

• So why upgrade?

LHC: Future plans

15 IOP, Joint Annual HEPP and APP Conference, 21-23 March 2016, Univ. of Sussex.

LHC: Future plans

15 IOP, Joint Annual HEPP and APP Conference, 21-23 March 2016, Univ. of Sussex.

LHC: Future plans

15 IOP, Joint Annual HEPP and APP Conference, 21-23 March 2016, Univ. of Sussex.

LHC: Future plans

15 IOP, Joint Annual HEPP and APP Conference, 21-23 March 2016, Univ. of Sussex.

LHC: Future plans

15 IOP, Joint Annual HEPP and APP Conference, 21-23 March 2016, Univ. of Sussex.

LHC: Future plans

Peak luminosity -²S⁻¹] 6.0E+34 Run 2 Run 1 5.0E+34 <PU> <**PU**> 20-40 uminosity 40 4.0E+34 **25 fb⁻¹** 0 3.0E+34 S Instantaneous 2.0E+34 Design 1.0E+34 Phase 1 upgrades 0.0E+00

15 IOP, Joint Annual HEPP and APP Conference, 21-23 March 2016, Univ. of Sussex.

Detector upgrades: challenges

• Pile up

- Detector performance degraded (e.g. pattern recognition)
- Offline reconstruction complexity

Radiation

- High fluencies and high doses for trackers and endcap calorimeters
- Degraded performance

Dose, 3000 fb⁻¹

Rates

Dose [Gy

Trigger rates increase with instantaneous luminosity and performance degrades with pile up (e.g. isolation)

Run	W→I _v rate
Run1	80 Hz
Run 2	200 Hz
Run 3	400-600
HL-LHC	1KHz

ATLAS: Phase 1 upgrade

25m

- Fast Track Trigger
 - Hardware (Associative Memory) based track finder (pattern matching)
 - FPGA-based track fitting
- Trigger and DAQ
- Level-1 Calorimeter Trigger (UK)
 - New electronics
 - Finer granularity
- Forward muon detectors
 - Muon "small wheels" improve tracking and trigger in forward regions

Imperial College ATLAS: Phase 1 upgrade London

- Level-1 Calorimeter Trigger
 - Upgrade calorimeter electronics will provide finer granularity data to Level-1 trigger in η and depth information
 - Preserve thresholds for single electron trigger at $p_T \sim 25$ GeV for LHC luminosity increasing to ~2-3x nominal
 - UK developing electron feature extractor and associated readout (ATCA and high speed optical links)

Imperial College ATLAS: Phase 2 upgrade London

- Full replacement of Inner Tracker (UK)
 - Existing Inner Detector performance degraded by radiation damage and high occupancy in Phase 2
 - Replace with all silicon tracker
 - pixels and microstrips
 - Significantly increase granularity
 - Pixel system (LOI layout) 4 barrel layers and 6 disks (~8 m²)
 - Strip system 5 barrel layers plus 7 disks (~190 m²)
 - Robust tracking with 14 layers \rightarrow
 - Minimise material budget within tracking acceptance

Other layouts with extended n under study

- Sufficient hits on track to maintain high efficiency and combat combinatorics at high pile up
 - Excellent tracking efficiency \rightarrow
- UK interest in large contribution to new tracker
- Extensive R&D underway for several years

ATLAS: Phase 2 upgrade

Microstrip Stave Prototype

Quad Pixel Module Prototype

ATLAS: Phase 2 upgrade

- Trigger upgrade
- New Trigger Architecture
- Two Level Hardware trigger
 - LO: 1 MHz, 6µs latency (calorimeter and muons)
 - L1: 300-400 kHz 24µs latency
- L1Track: Use tracking information earlier in trigger processing
 - Regional information from ITk
 - Associative Memory ASICs for track finding and FPGAs for track fitting (similar to FTK)
- Phase 1 L1 calorimeter trigger becomes Phase 2 L0

CMS: Phase 1 upgrade

- Hadron calorimeter
- Replace photodetectors and electronics between LS1 and LS2 \rightarrow add depth information and improved noise performance
- Level-1 Trigger (UK)
- New system with latest electronics runs from 2016 → now running in cosmic-ray runs!
- Pixel detector
 - New detector to be installed 2016/17

- Forward muon detectors
- New GEM detectors to be installed in LS2
- 22 IOP, Joint Annual HEPP and APP Conference, 21-23 March 2016, Univ. of Sussex.

Imperial College CMS: Phase 1 Level-1 Trigger upgrade London

- Replace older VME electronics with latest μ TCA (telecoms standard) electronics \rightarrow latest, powerful processing (FPGAs) and high speed serial links
- Replace copper links with optical fibres almost everywhere
- Earlier merging of detector data in muon system \rightarrow better reconstruction
- Pile up subtraction in calorimeter system for object energies and isolation energies

- Higher granularity (tower level)
- One processing FPGA sees the entire detector for one event
 - Seamless coverage of detector
 - Sophisticated algorithms (closer to offline)

CMS: Phase 1 Level-1 Trigger upgrade

Based on µTCA telecoms standard Input/output 72 optical links running up to 12.5 Gb/s \rightarrow 0.9 Tb/s

CMS: Phase 2 Tracker upgrade

- Pixel detector
 - Similar configuration as Phase 1
 - 4 layers and 10 disks to cover up to $|\eta| = 4$
 - Thin sensors 100 µm
 - Smaller pixels 30 x 100 µm
- Outer tracker (UK)
 - High granularity for efficient track reconstruction beyond 140 PU
 - Improved material budget
 - P_T -modules to provide trigger for tracks with $P_T \ge 2$ GeV

CMS: Phase 2 Tracker upgrade

- Outer tracker
 - and form stubs for trigger

26 IOP, Joint Annual HEPP and APP Conference, 21-23 March 2016, Univ. of Sussex.

					1	Г				
1			1	- 1	1	1		1	-	
							•		-	
1			1	- 1	1	1		1	-	
1	-		1		1	1			-	
	c	s				1				
•	4		1		1	1			-	
1			1		1	1		1	-	
		• •			•	•	•	•	-	
									_	
1					1	1			-	
									_	
										1
1			1		1	1	-			1
i	1	1	í		í	í		í	-	1
•		• •			•	•		•	-	
1		•		- 1	,	,	•	,	-	
								•	-	1
									_	
1					1	1			-	
1	-	r	3	H	1	1	H	ł	7	
	-	ř		-	•	1	•		-	
		a			1	L				
1		٩	1		١	ſ		1		
1	_	2			1	1	-		1	
ì					1	1		;		
									_	
1									_	
									=	
									_	
-						•			-	
-						-		-		
-					-	-		-	-	
-					-	-		-	-	
-					-	-		-		
-					-	-				
-					-	-				
-										
-										
-								-		
-								-		
-								-		
-										
-)	
-	•		<u> </u>				/)	
-	e		<u> </u>				/)	
-	•) 				/)	
	e))				/)	
-	e		<u> </u>				/)	
	•		<u> </u>				/)	
	•		<u> </u>				/)	
	•		<u> </u>				/)	
	•		<u> </u>				//)	
	e		, ,	1			//)	/
	e		<u> </u>	1)	/
	e		<u> </u>	1)	/
	e		2	1			/)	/
	e		2	1			/)	/
	E			1			//)	/
	6			1)	/
	6		2	1)	/
	6			1)	/
	•			1						/
	•		2	1						/
	e 1			1)	/
				1)	/
				1)	/
	e 1			1)	/
	e			1))	/

CMS Phase-2 simulation, < PU > = 140

Imperial College CMS: Phase 2 Calorimeter upgrade London

- Current endcap calorimetry will not remain performant after LS3
 - Combination of radiation damage and high pile up conditions
- Plan to replace by integrated highgranularity calorimeter
 - Sampling calorimeter with silicon sensors, optimised for high pile up
 - High granularity readout (~1cm²) and precision timing capability (<50ps)

CMS: Phase 2 Calorimeter upgrade

- High Granularity Calorimeter with 4D (space-time) shower measurement
 - Electromagnetic section (26 X0, 1.5 λ): 28 layers of Silicon-W/Cu absorber
 - Front Hadronic section (3.5 λ): 12 layers of Silicon/Brass or Stainless Steel
 - Back Hadronic Calo. (BH) radiation tol. granularity
 - BH (5 λ): 12 layers of Scintillator/Brass or Stainless Steel (2 depth readout)
- Major new areas of R&D (UK)
- Level-1 Trigger, reconstructions algorithms, analogue and digital electronics...

LHCb upgrade (Run 3)

Trigger

- Upgrade readout to 40 MHz \rightarrow fully softwarebased trigger
- New electronics and DAQ

VELO (UK)

New detector and electronics

RICH (UK)

- New detector and electronics
- More tomorrow morning...

Imperial College Summary and conclusions London

- LHC Run 1 a great success!
 - Discovery of Higgs boson
 - Key measurements and searches for beyond the Standard Model physics
- LHC Run 2 underway
- Hoping for even more excitement than Run 1
- Beyond Run 2
 - HL-LHC has a well motivated physics programme
 - Very significant upgrades to detector \rightarrow almost new experiments
 - Great opportunities to shape the future of our field

Imperial College Bibliography London

- ATLAS Upgrade Physics projections
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/UpgradePhysicsStudies
- CMS Upgrade Physics projections
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFP
- ATLAS LOI and LHCC Scoping Document
- CMS Technical Proposal and LHCC Scoping Document
- IOP, Joint Annual HEPP and APP Conference, 21-23 March 2016, Univ. of Sussex. 31

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2012-022/index.html https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2015-020/index.html

http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/TDR-15-002/index.html http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/phase2sd/index.html

ALICE upgrade

- Readout systems
 - Readout Pb Pb collisions up to 50 KHz (currently 0.5-1 KHz)
- New, high-resolution, low-material Inner Tracking System (ITS)
 - Improve tracking at low p⊤
 - 7 layers of pixels
 - 25G pixels based on MAPS

Higgs couplings

