Run Number: 204769 Event Number: 82599793 Date: 2012-06-10, 13:12:52 CET

EtCut>0.4 GeV PtCut>1.0 GeV

Muon: blue Cells:Tiles, EMC

Status of the Higgs sector at the LHC

EXPERIMEN'

K. Nikolopoulos University of Birmingham

UNIVERSITY^{OF} BIRMINGHAM

IoP Joint annual HEPP and APP conference 21st March 2016, University of Sussex, UK

The Higgs boson in the Standard Model

Faculté des Scienc	r. Englert and K. Brout es, Université Libre de Bruxelles, Br (Received 26 June 1964)	ruxelles, Belgium
Volume 12, number 2	PHYSICS LETTERS	15 September 1964
BROKEN SYMMET	'RIES, MASSLESS PARTICLES A	AND GAUGE FIELDS
Tait Institut	P.W.HIGGS te of Mathematical Physics, University of Edin	burgh, Scotland
	Received 27 July 1964	
Volume 13, Number 16	PHYSICAL REVIEW LETTERS	19 Остове я 1964
BROKE	N SYMMETRIES AND THE MASSES OF GAUGE	BOSONS
Tait Institute of	Peter W. Higgs Mathematical Physics, University of Edinburgh, Edin (Received 31 August 1964)	nburgh, Scotland
Volume 13, Number 20	PHYSICAL REVIEW LETTERS	16 November 1964
GLOB	AL CONSERVATION LAWS AND MASSLESS PA	ARTICLES*
I	G. S. Guralnik, [†] C. R. Hagen, [‡] and T. W. B. K Department of Physics, Imperial College, London, E (Received 12 October 1964)	übble England
	hard	12 1
		A Providence
	A A A A A	ALAN TO STATE

- \rightarrow Unification of electromagnetic and weak interactions: SU(2)_L \otimes U(1)_Y local gauge symmetry; massless carriers
- \rightarrow Symmetry spontaneously broken via Higgs field's VEV \neq 0
- \rightarrow 4 degrees of freedom of Higgs field
 - \rightarrow 3 become the vector bosons' longitudinal polarisations
 - \rightarrow the remaining is the Higgs boson
 - \rightarrow most economic way for EWSB
- $h \rightarrow VV$ defined by symmetry breaking
- h→ffbar is Yukawa coupling∝m_f

K. Nikolopoulos

Status of the Higgs sector at the LHC

Mar 21st, 2016

UNIVERSITY^{of} BIRMINGHAM

How many Higgs bosons?

In the Standard Model (tree level) it is predicted that: $\rho = \frac{m_W^2}{m_Z^2 \cos^2 \theta_m} = 1$

Measurement:
$$\rho_0 = 1.00040 \pm 0.00024$$
 LEP, SLD, Tevatron, ...

The p-parameter constrains the structure of the scalar sector In SU(2)_L \otimes U(1)_Y, ρ =1 at tree level for scalar sectors with:

- \rightarrow singlets with Y=0
- \rightarrow doublets with Y=±1
- \rightarrow more complex arrangements...

Landscape of studies in Higgs sector

K. Nikolopoulos

Status of the Higgs sector at the LHC

UNIVERSITY^{of} BIRMINGHAM

SM Higgs boson production and decay at the LHC

SM Higgs boson production versus \sqrt{s}

K. Nikolopoulos

Status of the Higgs sector at the LHC

BIRMINGHAM (

Pile-up

 $Z \rightarrow \mu\mu$ candidate with 25 reconstructed vertices (2012). Good quality tracks with pT>0.4GeV shown.

Status of the Higgs sector at the LHC

UNIVERSITY^{OF} BIRMINGHAM 7

h→ZZ^(*)→4I (I=e,µ)

Run Number: 182747, Event Number: 63217197

Date: 2011-05-28 13:06:57 CEST

Tracking and calorimeter isolation Impact Parameter (IP) significance

 $h \rightarrow ZZ^{(*)} \rightarrow 4I (I=e,\mu)$ Narrow peak in m₄₁ over smooth background S/B ~ 2

- Two same-flavour opposite-sign di-leptons (e/µ) - pT^{1,2,3,4} > 20, 15, 10, 7 GeV (6 GeV for μ) - Single lepton and di-lepton triggers

 $50 \text{ GeV} < m_{12} < 106 \text{ GeV},$ $m_{thr}(m_{4l}) < m_{34} < 115 \text{GeV} m_{thr} = 12-50 \text{GeV} (140-190 \text{ GeV})$ \rightarrow same-flavour opposite-sign pairs m_{ll}>5 GeV $\rightarrow \Delta R_{I,I} > 0.10(0.20)$ for (not-)same-flavour

→ Final State Radiation Recovery (~3% in resolution) → m_Z constraint (~15% in resolution)

K. Nikolopoulos

Status of the Higgs sector at the LHC

 $h \rightarrow ZZ^{(*)} \rightarrow 4$

- Narrow peak in m_{yy} (S/B ~3-4%)
- Main Backgrounds: ~80% di-photon $\rightarrow m_{\gamma\gamma}$ resolution ~20% γj and $jj \rightarrow$ photon-ID
- Background from data side-bands
- Selection: Two isolated photons ($|\eta|$ <2.47) with E_T>0.35(0.25)*m_{YY}

 π^{0} - γ Rejection

 $m_{\gamma\gamma}^2 = 2E_1E_2(1-\cos\alpha)$

K. Nikolopoulos

Status of the Higgs sector at the LHC

Mar 21st, 2016

h→γγ

UNIVERSITY^{of} BIRMINGHAM 12

Freakish Papers (courtesy: times higher education)

https://www.timeshighereducation.com/blog/world-university-rankings-blog-dealing-freak-research-papers

NATURE | NEWS

Physics paper sets record with more than 5,000 authors

Detector teams at the Large Hadron Collider collaborated for a more precise estimate of the

size of the Higgs boson.

Davide Castelvecchi

15 May 2015

The Higgs boson mass

ATLAS measurement: $125.36 \pm 0.37(\text{stat}) \pm 0.18$ (syst) GeV CMS measurement: $125.02 + 0.26_{-0.27}$ (stat) $+ 0.14_{-0.15}$ (syst) GeV

Calibration

Differential cross sections

UNIVERSITY^{of} BIRMINGHAM 16

K. Nikolopoulos

Status of the Higgs sector at the LHC

Mar 21st, 2016

H→WW^(*)→IvIv: Differential cross section

K. Nikolopoulos

UNIVERSITY^{of} BIRMINGHAM 18

Snapshot of cross section measurements

Standard Model Production Cross Section Measurements

Status: Nov 2015

UNIVERSITY^{of} BIRMINGHAM 19

$h \rightarrow \gamma \gamma$ and $h \rightarrow ZZ \rightarrow 4I$: Run 2

K. Nikolopoulos

Status of the Higgs sector at the LHC

Cross section versus energy

Search for New Physics

Status of the Higgs sector at the LHC

UNIVERSITYOF

BIRMINGHAM 22

Mar 21st, 2016

h→bb

- Largest BR (58%@m_H=125 GeV)
 - Large multi-jet background
- Associated production with W/Z
 - VBF also considered
- Backgrounds: W/Z+jets and top
- Final discriminant: BDT_{VH} including mbb
- Separate final states:
 - number of leptons: 0, 1, 2
 - P_T(V) or MET

0.1

0.09

 $0.08 \vdash \eta = 0.0$

number of jets and b-tags

Data 2012, vs = 8 TeV

Fractional JES uncertainty Absolute in situ JES 0.07 Relative in situ JES 0.06 Flav. composition, inclusive jets Flav. response, inclusive jets 0.05 Pileup, average 2012 conditions 0.04 Jet P_T scale uncertainty 0.03 0.02 0.01 0 2×10³ 10^{3} 10² 2×10² 20 30 40 p_{τ}^{jet} [GeV]

Total uncertainty

K. Nikolopoulos

Status of the Higgs sector at the LHC

Run I dataset ~SM sensitivity ATLAS/CMS observe excess over expected background

1.89

0.95

All channels

	Significance	µ ^{95%} upper
ATLAS	1.4σ (2.6σ)	1.2 (0.8)
CMS	2.1σ (2.1σ)	1.89 (0.95)
Combined	2.6σ (3.7σ)	-

K. Nikolopoulos

2.1

2.1

UNIVERSITYOF

BIRMINGHAM 25

һ→тт

- Promising for down-type fermion/lepton couplings
- Backgrounds
 - Z \rightarrow TT dominant [embedding]
 - "Fakes": Multijet, W+jets, top [data-driven]
 - "Other": Dibosons/H->WW* [MC]
- Three sub-channels: $T_{lep}T_{lep}$, $T_{lep}T_{had}$, $T_{had}T_{had}$ [$m_T \sim 1.78$ GeV and $c_T \sim 87.1 \ \mu m$, $T \rightarrow leptons 35\%$, $T \rightarrow hadrons 65\%$]
- Sensitivity from VBF and boosted topologies

ep_T = 56 GeV, τ_{had} p_T = 27 GeV, MET=113 GeV, m_{j1,j2}=1.53 TeV, m_π^{MMC}=129 GeV, BDT score = 0.99. S/B ratio of this bin 1.0

h→TT: Results

JHEP 1504 (2015) 117

K. Nikolopoulos

Status of the Higgs sector at the LHC

h→TT: Results

K. Nikolopoulos

Status of the Higgs sector at the LHC

Snapshot of cross section measurements

Standard Model Production Cross Section Measurements

Status: Nov 2015

h→ttbar kinematically forbidden; direct information on top-Yukawa through associated production

Complex final states:

- $tth \rightarrow \gamma\gamma$
- tth→multi-leptons
 - (h→WW*,ZZ*, тт)
- tth→bb

Categories based on the decays of the top quarks (di-leptons, I+jets,...)

m _h =125 GeV	μ ^{95%} upper	Significance	Reference
CMS (125.6 GeV)	4.5 (1.7)	3.4(1.2)	JHEP 1409(2014) 087
ATLAS bb	3.4 (2.2)	1.4(1.1)	Eur.Phys.J. C75 (2015) 349
ATLAS multi-leptons	4.7 (2.4)	1.8(0.9)	Phys.Lett.B749(2015)519
ATLAS γγ (125.4 GeV)	6.7 (4.9)	-	Phys.Lett. B740(2015) 222
ATLAS Couplings (125.36 GeV)	-	2.5(1.5)	Eur.Phys.J. C76 (2016) 6
Combined	-	4.4(2.0)	ATLAS-CONF-2015-044 CMS-PAS-HIG-15-002

ttH in Run 2

h→µµ

- Probing 2nd generation Yukawa couplings
- BR_{SM}~2·10⁻⁴(125 GeV); S/B~0.2%
- Simple Final State
 - μ⁺μ⁻ (p_T>25,15 GeV, p_{Tµµ}>15 GeV)
- Backgrounds: $Z/\gamma^* \rightarrow \mu\mu$, top, dibosons
 - Parametric Model: Breit-Wigner+Expo
- Categorisation: central/non-central muons and/or production mechanism
- 95% CL upper limit @m_H=125 GeV: ATLAS : 9.8 (8.2)xSM CMS: 7.4 (6.5)xSM

no universal Higgs boson

coupling to fermions

CMS search for $h \rightarrow e^+e^-$

BR(h→ee)<1.9·10⁻³

 $BR_{SM}(h \rightarrow ee) \sim 5 \cdot 10^{-9}$

[Phys.Lett. B744 (2015) 184]

Mar 21st, 2016

UNIVERSITYOF

BIRMINGHAM 33

K. Nikolopoulos

Status of the Higgs sector at the LHC

Events/2.5 GeV

$h \rightarrow Q\gamma (Q=J/\psi,Y)$

K. Nikolopoulos

Higgs boson production and decay modes

Status of the Higgs sector at the LHC

Probing the Higgs boson couplings

Probing the Higgs boson couplings

BSM contributions in decays/loops

ATLAS-CONF-2015-044 CMS-PAS-HIG-15-002

ZH(→inv)

- SM "Invisible" decays suppressed; BR(H \rightarrow ZZ* \rightarrow 4v)=1.2·10⁻³
 - Observation means New Physics!

Phys. Rev. Lett. 112, 201802 (2014)

K. Nikolopoulos

Status of the Higgs sector at the LHC

Mar 21st, 2016

UNIVERSITY^{of} BIRMINGHAM 40

- → Indirect constraints from low-energy data; certain transitions still loosely constrained [JHEP 03 (2013) 026; Phys.Lett. B712 (2012) 386]
- \rightarrow QFV: constraints from flavour physics
- \rightarrow LFV: constraints from $\mu \rightarrow e\gamma$, $\tau \rightarrow \mu/e\gamma$, μ/e g-2, EDM
- BR(H→eµ)<10⁻⁸; BR(H→et)≲10%; BR(H→µt)≲10%

FCNC in t \rightarrow qh

Process	SM	QS	2HDM-III	FC-2HDM	MSSM
$t \to u\gamma$	$3.7 \cdot 10^{-16}$	$7.5 \cdot 10^{-9}$			$2 \cdot 10^{-6}$
$t \rightarrow uZ$	$8 \cdot 10^{-17}$	$1.1 \cdot 10^{-4}$		—	$2 \cdot 10^{-6}$
$t \rightarrow uH$	$2 \cdot 10^{-17}$	$4.1 \cdot 10^{-5}$	$5.5 \cdot 10^{-6}$	—	10^{-5}
$t \to c\gamma$	$4.6 \cdot 10^{-14}$	$7.5 \cdot 10^{-9}$	$\sim 10^{-6}$	$\sim 10^{-9}$	$2 \cdot 10^{-6}$
$t \to cZ$	$1 \cdot 10^{-14}$	$1.1 \cdot 10^{-4}$	$\sim 10^{-7}$	$\sim 10^{-10}$	$2 \cdot 10^{-6}$
$t \to cH$	$3 \cdot 10^{-15}$	$4.1 \cdot 10^{-5}$	$1.5 \cdot 10^{-3}$	$\sim 10^{-5}$	10^{-5}

Light quarks challenging, focus on top-quark decays

ATLAS search for t \rightarrow qh(\rightarrow q γ , bb, WW, TT), where q=(c,u)

- 95% CL upper limit on BR(t→ch): 0.46% (0.25%)
- 95% CL upper limit on BR(t→uh): 0.45% (0.29%)
- CMS combined $h \rightarrow \gamma \gamma$ and multi-lepton search.
 - 95% CL upper limit on BR(t→ch): 0.56% (0.65%)

[Phys.Rev. D90 (2014) 112013]

Status of the Higgs sector at the LHC

Lepton Flavour Violation: $h \rightarrow \tau \mu$, τe , μe

K. Nikolopoulos

Probing the Higgs Yukawa couplings at the LHC

Lepton Flavour Violation: $h \rightarrow \tau \mu$, τe , μe

BR 95% CLLimit	ATLAS	CMS
τμ	<1.43%*	<1.51%
те	<1.04%*	<0.69%
eµ	-	<0.036%

*New for Moriond

K. Nikolopoulos

Status of the Higgs sector at the LHC

Mar 21st, 2016

h→aa

K. Nikolopoulos

Status of the Higgs sector at the LHC

BIRMINGHAM 46

Higgs boson pair production at 13 TeV

UNIVERSITYOF

BIRMINGHAM 48

Mar 21st, 2016

Summary

K. Nikolopoulos

Status of the Higgs sector at the LHC

Mar 21st, 2016 🥻

