Quark and Lepton Flavour -probing the PeV scale

IOP Sussex 2016

Purpose

(New) Physics up to PeV Scale
 (Quarks – well covered)
 Leptons
Charged Leptons
 EDMs

Landscape

- We have discovered the 125 GeV Higgs
- We know neutrinos oscillate
- Seen gravitational waves
- Haven't yet seen any sign of SUSY
- CP in quark sector not enough for matter and antimatter asymmetry
- No understanding of neutrino mass
- Tantalizing hints of NP at HE, energy frontier and at lower energies
 - 2TeV, 750 GeV, g-2,...

Physics

Caveat: Scales

- Not all "new" experiments tell the same story
 - Explanations for g-2 probe ~1 TeV models
 - Useful for SUSY
 - cLFV/EDMS probe up PEV > scales
 - Keep probing for SUSY at higher energies
 - (Split) SUSY PeV Scale 1308.3653
 - Non zero $\theta_{\rm QCD}$ can hide NP
 - (no energy scale dim 4 operator)

Weiler, EPS 2015

Anomalies

- \sim 3.5 σ $(g-2)_{\mu}$ anomaly
- \sim 3.5 σ non-standard like-sign dimuon charge asymmetry
- ~ 3.5 σ enhanced $B \rightarrow D^{(*)} \tau \nu$ rates
- $\sim 3.5\sigma$ suppressed branching ratio of $B_s o \phi \mu^+ \mu^-$
 - $\sim 3\sigma$ tension between inclusive and exclusive determination of $|V_{ub}|$
 - $\sim 3\sigma$ tension between inclusive and exclusive determination of $|V_{cb}|$
- $2-3\sigma$ anomaly in $B \rightarrow K^* \mu^+ \mu^-$ angular distributions
- $2 3\sigma$ SM prediction for ϵ'/ϵ below experimental result
- $\sim 2.5\sigma$ lepton flavor non-universality in $B \to K \mu^+ \mu^-$ vs. $B \to K e^+ e^-$
- ~ 2.5 σ non-zero $h \rightarrow \tau \mu$

Large number of modest tensions in large number of data!

Wolfgang Altmannshofer

Silvestrini: QCD? <u>1512.07157</u>

SUSY to PeV

Altmannshofer et. al. 1308.3653

FIG. 1: Summary of various low energy constraints (left of the lines are the excluded regions) in the sfermion mass vs. $\tan \beta$ plane for the example of 3 TeV bino and wino and 10 TeV gluino, while fixing the mass insertion parameters to be $(\delta_A)_{ij} = 0.3$ when using the super-CKM basis. The dark (light) blue shaded band is the parameter space compatible with a Higgs mass of $m_h =$ 125.5 ± 1 GeV within 1σ (2σ). The upper (lower) plot gives the reach of current (projected future) experimental results collected in Tab. []

Physics

Probes for NP

		1	1	-			-	-
	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS]
$D^0 - \bar{D}^0$	***	*	*	*	*	***	?]
ϵ_K	*	***	***	*	*	**	***]
$S_{\psi\phi}$	***	***	***	*	*	***	***]
$S_{\phi K_S}$	***	**	*	***	***	*	?	
$A_{\rm CP}\left(B o X_s \gamma\right)$	*	*	*	***	***	*	?]
$A_{7,8}(B\to K^*\mu^+\mu^-)$	*	*	*	***	***	**	?]
$A_9(B\to K^\star\mu^+\mu^-)$	*	*	*	*	*	*	?]
$B\to K^{(\star)}\nu\bar\nu$	*	*	*	*	*	*	*	_ م
$B_s \to \mu^+ \mu^-$	***	***	***	***	***	*	*	
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***	
$K_L ightarrow \pi^0 u ar{ u}$	*	*	*	*	*	***	***	<u> </u>
$\mu \to e \gamma$	***	***	*	***	***	***	***	
$\tau \to \mu \gamma$	***	***	*	***	***	***	***	
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***	
d_n	***	***	***	**	***	*	***] Ξ
d_e	***	***	**	*	***	*	***	1
$(g-2)_{\mu}$	***	***	**	***	***	*	?	

RH Currents

-				
AC	=	Agashe, Carone hep-ph/0304	4229	(Abelian)
RVV2	=	Calibbi et al. 0907.4069		(non-Abelian)
AKM	=	Antusch et al. 0708.128	(flav	our symmetry)

δLL =(CKM LH currents)FBMSSM =(flavour blind MSSM)LHT =(Little Higgs with T parity)RS =(Randall-Sundrum)

If New Physics has generic flavor violating couplings of *O*(1), it has to be at extremely high scales

If there is New Physics at the TeV scale, it has to have a highly non-generic flavor structure

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\star \star \star \star$ signals large effects, $\star \star \star$ visible but small effects and \star implies that the given model does not predict sizable effects in that observable.

W. Altmannshofer, A.J.Buras, S.Gori, P.Paradisi, D.M.Straub

Physics

Quarks very SELECTED TOPICS

LUV

• R_{K}

• Mixing

 $K \rightarrow \pi \nu \nu, B \rightarrow \mu \mu, \dots$

Mixing

Standard Model amplitude is loop suppressed and CKM suppressed

$$\propto rac{g^4}{16\pi^2} rac{m_t^2}{M_W^4} (V_{td} V_{ts}^*)^2$$

► Generic New Physics amplitude only suppressed by New Physics scale

► CP Violation in Kaon Mixing can probe extremely high scales

$$\Lambda_{
m NP}\sim rac{M_W^2}{m_t}rac{4\pi}{g^2}rac{1}{|V_{td}V_{ts}^*|}\!\sim 10^4~
m TeV$$

Wolfgang Altmannshofer (PI)

Challenges for New Physics in the Flavor Sector

FPCP 2015 11 / 29

Mixing

Mixing

NP in D-mixing

 CP violation in ΔF=2 processes is the most sensitive probe of NP, reaching scales of O(10⁵) TeV

$$\mathcal{L}_{\text{BSM}} \to \mathcal{L}_{\nu \text{SM}} + \sum_{i,(d>4)} \frac{\mathcal{Q}_i^{(d)}}{\Lambda^{d-4}}$$

- CPV in D mixing gives best bound after $\epsilon_{\rm K}$
- How far can we push it?

UTFit, 0707.0636 Isidori, Nir & Perez, 1002.0900 Lenz et al., 1203.0238 ETMC, 1207.1287 Mixing

Mixing

FIG. 7: Squark masses $m_{\tilde{q}}$ probed by meson oscillations as a function of the phase of the NP contribution ϕ_i . The gluino mass is fixed to $|m_{\tilde{g}}| = 3$ TeV. The dark (light) shaded regions are excluded at 95% (90%) C.L.. The dashed lines show the expected 95% C.L. constraints with future experimental improvements on CP violation in meson mixing (factor ~ 10 in D^0 mixing, factor ~ 2 in B_d mixing, and factor ~ 10 in $|\mathcal{D}_g$ Probable X 2016

$b \rightarrow s$

$$\mathcal{H}_{\text{eff}}^{b \to s} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i \left(C_i \mathcal{O}_i + C_i' \mathcal{O}_i' \right)$$

magnetic dipole operators

 $\propto 1/q^2$

semileptonic operators

 \propto 1

	C_7, C_7'	C_9, C'_9	C_{10}, C_{10}'
$B ightarrow (X_{\mathcal{S}}, K^*) \gamma$	*		
$B ightarrow (X_{s}, K, K^{*}) \mu^{+} \mu^{-}$	*	*	*
$B_{\rm S} \rightarrow \phi \; \mu^+ \mu^-$	*	*	*
$B_s ightarrow \mu^+ \mu^-$			*

neglecting tensor operators (secretly dimension 8) neglecting scalar operators (strongly constrained by $B_s \rightarrow \mu^+ \mu^-$) (Alonso, Grinstein, Martin

Alonso, Grinstein, Martii Camalich '14) FCNC

Quarks: beauty

2015

Large number of measurements gives large trial factor

Global p-value

- ► $\Delta \chi^2 = 15.2$
- p-value: 12.4%
 (2.1% in the SM)

Many experimental improvements: Theoretical uncertainties? uarks:

beauty

FCNC

- FNCN top decays arxiv:1312.419
 t→qZ
- Multileptons (CMS) PAS TOP-13-017

Cirigliano / top quark arxiv.org/pdf/1603.03049.pdf

 Top quark flavour violation can be tensioned against measurements from B&K physics and EDMs

Leptons SELECTED TOPICS another way to reach a PeV

Many tests at different facilities

Process	Current Limit	Next Generation exp
$\tau \longrightarrow \mu \eta$	BR < 6.5 E-8	
$\tau \longrightarrow \mu\gamma$	BR < 6.8 E-8	10 ⁻⁹ - 10 ⁻¹⁰ (Belle II)
$\tau \longrightarrow \mu \mu \mu$	BR < 3.2 E-8	
$\tau \longrightarrow$ eee	BR < 3.6 E-8	
K _L > eμ	BR < 4.7 E-12	
K+> $\pi^+ e^- \mu^+$	BR < 1.3 E-11	NA62
B ⁰ > eμ	BR < 7.8 E-8	
B+> Κ+eμ	BR < 9.1 E-8	Belle II, LHCb
$\mu^+ \longrightarrow e^+\gamma$	BR < 5.7 E-13	10 ⁻¹⁴ (MEG)
$\mu^+> e^+e^+e^-$	BR < 1.0 E-12	10 ⁻¹⁶ (PSI)
μN> eN	R _{μe} < 7.0 E-13	10 ⁻¹⁷ (Mu2e, COMET)

The most sensitive CLFV probes use muons

LFV

Neutrino Oscillations and CLFV

- Neutrinos oscillate, so lepton flavor is not conserved.
- Charged leptons *must* mix through neutrino loops.
 - But the mixing is so small, it's effectively forbidden.

• No Standard Model pollution! Observation is unambiguous evidence for new physics.

$$Br(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{\ell} V_{\mu\ell}^{\star} V_{e\ell} \frac{m_{\nu_{\ell}}^2}{M_W^2} \right|^2$$
$$\leq 10^{-54}$$

Experiments mostly MUONS AND EDMS g-2 COMET MEG mu2e mu3e srEDMs

LFV

A search for Charged-Lepton Flavor Violation LFV in the field of a nucleus (see COMET) Use *current* Fermilab accelerator complex to reach a sensitivity 10 000 better than world's best

Data taking 20/21

Mu2e plans to use aluminum Sensitivity goal requires ~10¹⁸ stopped muons

1,000,000,000,000,000,000

- =number of stopped Mu2e muons
- = number of grains of sand on earth's beaches

 $\frac{m_{\mu}}{(1+\kappa)\Lambda^2} \overline{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + \frac{\kappa}{(1+\kappa)\Lambda^2} \overline{\mu}_L \gamma_{\mu} e_L \left(\sum_{q=u,d} \overline{q}_L \gamma^{\mu} q_L\right)$

Mu2e extends beyond exisiting MEG for all BSM interaction types and conversion process has sensitivity to non-dipole BSM that MEG doesn't.

$\mu N \rightarrow eN$ sensitive to wide array of New Physics models

scalar leptoquarks

not excluded by LHC

Arnold et al, Phys. Rev D88 035009 (2013)

Scalar leptoquark mass [TeV]

TeV-scale Left-right seesaw model

 10^{-1}

30

m₁ (TeV)

10

3

10-16

 10^{-1}

10² 3×10² 10³

mu2 Π Many of the CLFV models have: - effects too weak to see at LHC e.g. non-standard h (e mu) coupling - physics at a scale beyond LHC e.g. split SUSY and physics of neutrino masses

LFV

<u>Experiment:</u>

COMET

- Two-phase approach:
- physics and background
- studies with first 90° for
- Phase-I, full O(10⁻¹⁷)
- sensitivity for Phase-II

Adjustable charge & momentum selection with vertical B-fields

Intense 56 kW beam: full sensitivity after one year

COMET Facility at J-PARC

- COMET Building and Hall, Counting Rooms completed
- Phase-I Bent Solenoid installed and undergoing testing, detector solenoid almost complete
- System integration work ongoing

COMET: Schedule

Japanese Fiscal Year		2015	2016	2017	2018	2019	2020	2021		
CO	MET Beamline			Phase-II construction concurrently						
Phase-I	Construction				with	Phase-	l running			
	Data									
Phase-II	Construction									
	Data									

IOP Sussex 2016

- CFLV with $\mu \rightarrow eee$
- Look at 1 in 10¹⁶ decays

Heavily suppress $\mu \rightarrow eeevv$

(over 16 orders magnitude

with kinematic cuts)

I FV

mu3e v mu2e

- leptogenesis models (with cLFV) there are big variations in the expected rates of the $\mu N \rightarrow eN$ and the $\mu \rightarrow eee$ decays.
 - If inverted neutrino mass hierarchy enhancement of $\mu{\rightarrow}\text{eee}$ decays
- If NP couples more strongly to leptons than to quarks, mu3e has unique sensitivity.
- More than event counting if signal
 Full reconstructed 3 electron state
- Access to dark photons (10 to 100 MeV)

Putting it all together

IOP Sussex 2016

Race

LFV

We need all the results!

Even sensitivity to **non-standard Higgs couplings** (new Higgs bosons)

Sensitive down to BR ($h
ightarrow \mu e$) of 10⁻¹⁰ (cf current LHC limit of 3 x 10⁻⁴)

Experiment: all

Many Model Dependent Relationships between observables

NP

g-2 does not probe flavour changing interactions but NP in loops....

Can address models: technicolor, SUSY, 2HDM, LHT, W', Z' (TeV range)

By 2019 (First Data 2017) 5.5 σ significance from the experimental improvement becomes 9.7 σ evidence of NP

- Improvements from BNL
 - More muons/proton, less pions
 - Improved detectors (3 trackers, Calorimeters)
 - Better beam dynamics
 - Improved field uniformity
 - Improved modelling

EDM

e

EDM Limits (e cm) 10-12 10-12 10-12

10⁻²²

10⁻²⁷

10⁻³²

10⁻³⁷

μ

EXP

¹³⁷Hg

n

SM

р

EXP

SM

τ

EXP

- Phase-I Part of g-2 experiment (first measurement)
- see anything in muons, sign of new physics
 - $|d_{e}| < 10^{-29}$ e cm, the current results, for 2nd generation muons 10 orders of magnitude worse, $|d_{\mu}| < 1.8 \times 10^{-19}$ e cm
- q-2@FNAL will get improve this by two orders of magnitude

43

EDM

EDM e-cm

Examples of a 4-loop diagram, the lowest order contributing to lepton EDMs in the Standard Model, and 5-loop diagram

EDM

e(p)EDM

- Ideas from same original g-2 team
- pEDM "like" g-2 but ALL electric
 - Counter rotating beams enable huge cancellation of systematics
 - Study polarization of proto

2014 received P5 support under all scenarios

Sensitivity to Rule on Several New Models

J.M.Pendlebury and E.A. Hinds, NIMA 440 (2000) 471

Summary

- Flavour (quark and lepton) provides wide vista onto possible NP up to PeV scale
 - Charged leptons provide especially clean signals for NP

IST

- Need multiple experiments to interpret signals
- Fertile ground for theory
- Involvement for all: specialized experiments to GPD
 - Think creatively its inspirational
- Exciting time competition to find new physics

Thanks.