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« Atom interferometry concepts

» Motivation for building this detector

- Developing the next generation of gravity sensors
and gyroscopes for use in fundamental physics
searches

- Can dark energy be detection on the laboratory
scale? !l

« Status of the prototype

- First step is to build a prototype atomic
interferometer and use this to measure local
gravity

- Experiment upgrades

Experimental set-up of an Atomic
interferometer

« Future development

- Experiment goals [Reference 1]
A terrestrial search for dark contents of
the vacuum, such as dark energy,
using atom interferometry
Martin L. Perl arXiv:1101.5626



Atom Interferometry

» Atomic interferometry - powerful tool for extremely precise
measurements of fields.

 Laser Cooled atoms to nK temperatures

» Wave-like nature of atoms used to form a superposition which results in
interference analogous to a laser interferometer

Interferometry
The classical trajectory of a falling atom that is “split”
and “recombined” by light pulses.
[M. Perl et al, “Terrestrial search for DCV,” 2011]
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Magneto-Optical Trapping

* Doppler cooling using 3 orthogonal
pairs of counter propagating laser
beams

» Magnetic field creates a position
dependent trapping force

 Pumping laser keeps atoms in
resonance with the cooling laser

» The atom trap is filled with Rb
from an atomic oven
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Atom Interferometry

1. 3D Magneto-Optical Trap, 2. Free fall 3. Raman /2 pulse 4, Interrogation time T
then state selection [Splitting)
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Experiment Aims

No vacuum fluctuations

* Investigate the contents of the A B A(Ag) = Apg- Ay
vacuum on the laboratory scale

* Two interferometers are set up Ad Subtraction

side by side /

« Measure a variation between the W= sep =0
phase differences of the

interferometers due to an external A, Ay

potential.

Assumptions for detection Phase difference from external potential
« External potential has A 5 A49)=0¢s-L¢4

iInhomogeneous spatial distribution.

» Exert a force on matter which is
non-gravitational.

Ad Subtraction
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Prototype Interferometer

Preparation

* 108 ultracold atoms in free-fall under
gravity

~108 atoms ~20 pK

Interferometry Region

* Light-pulse interferometry sequence with
Raman beams

Detection Region

* Interference fringes

e Atom population ratio measurement are
sensitive to phase difference




Beam Alignment

« 3 quasi-orthogonal cameras used to
align the MOT cooling beams

* Enables beams crossing to be placed
within a pixel and set beams to be
orthogonal.

Camera 1

Camera 2

Camera 3



Beam Alignment

 MOT cooling beams are set to all cross within 1 pixel on each camera and
have a gradient of less then 1 pixel over 1000 pixels

« After precision alignment a uniform MOT can be produced. With equal forces
being applied by each of the 6 beams




Molasses Sequence

At At At At

* Doppler limitis ~ 200 pk sfeld O 1
* Additional cooling by using latzr;iir;i

polarisation gradient cooling ~2 pK

Trapping Max

* FGPA timing sequences varies NTENSIY o beom

magnetic field, laser power and Pumping  Mex

detuning IntenSity No beam
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« Parameters to vary
At — eddies currents
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At, — cooling
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Temperature Measurement

* Imaging expanding atomic cloud
at varying times after release from
molasses

« Radius of cloud is related to
velocity and therefore temperature
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Temperature Optimisation

« Example of some of the
parameters which are varied to
optimise the molasses
temperature
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Atom Drop
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Raman Beams

e Delivered by a fibre

« Two photon Raman transition,
separated by 3 GHz

* “mr-pulse” = “mirror” pulse

» “1/2-pulse” = “beamsplitter” pulses

(half duration)
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Measurement of Gravity

 Varying the chirp rate of the Raman beams traces out the interferometer fringes

e Changing the time T between Raman pluses traces out different fringe patterns

* Where the fringes meet corresponds to the chirp rate required to cancel out the

Doppler shift due to gravity
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Future Plans

 Finishing commissioning in the coming
months

- increase the power in the raman
beams

« Measurement of local gravity as a
benchmark

» Optimisation of device

* Implement double interferometer
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Additional Slides



Nature of Dark Energy

« Cosmological observations indicate
68% of the universe is dark energy.

* Present theory offers no
fundamental understanding of the
nature of dark energy

» Dark energy has a small but
non-zero density 1.67x10%" kg m=. Is
this measurable on a terrestrial
scale?

Dark Matter

Dark Energy

Planck Results arXiv:1303.5062




Frequency Control System

* Many frequencies required for the

. Fr—=4
atom interferometer — from only VAN | 120 81,
two lasers o L A | o3
- H I 29 MHz
» Optical circuit generates all T
required frequencies from and | Virtual state
acousto-optical modulators (AOM) = A
/R1. /R2
e Interferometry requires a e I‘:%“fe ometry phlses
two-photon transition - | o0 vis
« AOM's allow the lasers to be vary Rubidium-85 hyperfine structure
in frequency and intensity
Undeflected
light
Separation
angle

Diffracted light

Fiero-electric
transdueter




Raman Transitions
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Raman Beam Delivery

Fibre delivers the Raman beams

10 m fibre cleans up modes of
beam. mll lm__,

Collimated into 10.8 mm beam. ”




Precision Alignment

Using precision optics with

- Extremely flat surfaces, A/20

- Small beam deviations, 10 urads
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Improving Sensitivity.

Using atom interferometers to measure
tidal effects:
o,needtobe 10"  Ap = k.rgT" =
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* Require having large phase shift A®:

(Measured g — 979 930 000 pGal) /pGal

* Prototype under construction height ~ 1 m
1 uGal = 10-8ms-2

* T2 is proportional to h,

* h =10 m, approx 10 x improvement in A®,

Increased atom number gives increased statistical power

Increased drop length gives greater sensitivity of each
measurement



Polarisation Gradient Cooling

[Himswaorth thesis, “Coherent Manipulation..” 2009]
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FIGURE 5.4: The Sysiphus effect of Sub-Doppler cooling. See text for details. The
width of the lower mp states (red and blue ) representative of the state populations.




Atom Number

Power: Atom No. Solid angle
,Scatting rate Photon energy

Calculation

*Measure flux for some small area
*Extrapolate 41t flux

*Subtract laser fluorescence background

*Take ratio: divide by single atom flux
(scattering rate * photon energy)

* i.e. N =total flux / single atom flux

Time of flight measurement

Thesis Kevin J. Weatherill Durham Atomic physics

A CO2 Laser Lattice Experiment for Cold Atoms
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