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Manufacture 
•  Samples cleaned using acids 
•  Use laser in in the Photon Science 

Institute to create the columns 
•  Move the focal point of the laser 

through the bulk of the sample 
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See Talk By Steve Murphy for more details 
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Manufacture 
•  Use a photolithographic process  
•  Apply photoresist to sample 
•  Expose to UV light  
•  Develop the pattern 
•  Treat the surface with a plasma 
•  Evaporate/sputter the desired 

pattern on the surface  
•  A number of detectors have so far 

been successfully produce in 
Manchester 
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Device simulation 
•  Used Sentaurus TCAD package for simulations 
•  Create a mesh to model the device that needs to 

be simulated as a set of discreet points 
•  Apply a set of boundary conditions (e.g. electrode 

potentials) to find the steady state behavior of the 
device 

•  Introduce a charge density in certain regions of 
the device to simulate e.g. a MIP hit or an α-
particle 

•  Iteratively solving the governing equations of 
semiconductors, can therefore simulate behavior 
such as current pulses 

•  Can also add more advanced Physics models 
such as field dependent mobility 
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Diamond Model 

•  Need to first add the parameters of 
diamond to the model as they are not 
present in TCAD 

•  Define new material with diamond 
properties 

•  Compare results from simulation to 
the data to verify the accuracy of the 
model 

•  Interested mainly in timing, good 
agreement between simulation and 
experimental data 
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(*)Simulations compared to H. Pernegger et al. Charge-carrier properties in synthetic single-crystal 
diamond measured with the transient-current technique. Journal of Applied Physics, 97(7):–, 2005. 
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3D Diamond 
TRIBIC 

•  TRIBIC (Time Resolved Ion Beam 
Induced Current) measurements on 
3D Diamond sample 

•  2013 Test beam in Zagreb, studied 
3D Diamond detector with 4 MeV 
protons, and measured current 
produced 

•  4MeV protons produce a Bragg 
peak 80-100 µm inside the diamond 

•  Self Triggered, ~ 2 µm precision 

•  Simulate the shape of the current 
pulse generated  
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Beam
 

Device 
G. Forcolin, V. Grilj, B. Hamilton, L. Li, M. 
McGowan, S. Murphy, A. Oh, N. Skukan, D. White- 
head, A. Zadoroshnyj, Study of a 3d diamond 
detector with photon and proton micro-beams, 
Diamond and Related Materials 65 (2016) 75 – 82  



•  Performed the simulations on a quarter square cell structure 
with 120µm pitch 

•  Approximated the deposited charge to a Bragg peak 
•  Running transient simulations to study the how the current 

pulse changes with different applied voltages and different hit 
positions 
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3D Diamond TRIBIC simulations 
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•  Ran simulations at different 
voltages 

•  Simulations do not include 
traps 

•  Simulations included a 
surface metallization along 
the y direction to match the 
detector geometry used 

•  Applied bias voltage on the 
signal electrode, which was 
also read out; kept the HV 
electrode grounded  
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3D Diamond TRIBIC simulations 



 
•  Observed that with certain hit positions, double 

peak shape due to the different travelling time of 
electrons and holes 

•  Observed strong dependence of height and shape 
of the signal on the position of the hit due to non-
uniformity of electric field within cell 

•  Amplitude plotted as an analogue for charge 
collection time 
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3D Diamond TRIBIC simulations 
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3D Diamond 
Simulations 

•  Single crystal and polycrystalline 
3D Diamond detectors studied at 
test beams 

•  Use simulations to understand 
observed behavior  

•  Single crystal behavior reasonable 
well understood 

•  Polycrystalline behavior not as 
straightforward, but good progress 
is being made towards 
understanding it 

•  More details in poster presentation 
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3D Diamond Simulations 
•  Simulations can also be used to understand effects of different fabrication 

parameters on the performance of the detectors, and hence can be used to 
optimize the design 

•  Various parameters are being studied, such as the size of the electrodes 
•  Want to reach good compromise between having a high active area, and 

keeping the field high enough throughout the detector 
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25V, 5µm Column radius 100µm pitch 
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25V, 0.5µm column radius, 100µm pitch 

E
lectric Field (V

 cm
-1) 

E
lectric Field (V

 cm
-1) 



Diamonds at the Christie’s 
•  Want to use 3D diamond for 

dosimetry in radiotherapy. 
•  Working in collaboration with 

the Christie hospital 
•  Goal to have detectors that 

allow real time, high resolution 
monitoring of dose received by 
patient 
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•  Diamond is radiation hard, non toxic, 
and tissue equivalent. 

•  3D geometry allows operation at low 
voltage 



Diamonds at the Christie’s 
•  Tried scanning different parameters 
•  Moved the detector to study the 

observed current at different 
positions in the beam 

•  Tried studying the effects of applying 
different voltages to both planar and 
3D detectors 
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Future Plans 
•  Need to test radiation hardness of 3D Diamond, and study the 

effect of irradiation on the columns 
•  Sample irradiated at CERN-PS, properties of columns have 

been measured before irradiation, will be re-measured once 
sample has cooled down 

•  More measurements will be carried out at the Christie’s using 
detectors with a purposely designed geometry  

•  Analysis to be complete on pCVD diamond test beam data, 
and comparison to simulations will be published in the coming 
months 
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Thank You for listening! 

15 Giulio Forcolin  22 Mar 2016  IoP HEPP and AP joint meeting    



Backup Slides 
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Diamond Model 
•  Need to first add the parameters of diamond to 

the model as they are not present in TCAD 
•  Define new material with diamond properties 
•  Include a high field saturation mobility model 

based on the TCT results reported by 
Pernegger et al(*) 

•  Compare results from simulation to the data to 
verify the accuracy of the model 

17 

(*)H. Pernegger et al. Charge-carrier properties in synthetic single-crystal diamond 
measured with the transient-current technique. Journal of Applied Physics, 97(7):–, 2005. 
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3D Diamond MIP simulations 
•  Better understand results of test beam with a 3D 

Diamond detector using 120 GeV protons (MIPS) 
•  Understand charge sharing between neighboring 

cells, particularly when a bias column was missing 
•  Understand difference in charge collection in broken 

cells 
•  Then applied simple finite charge lifetime model to 

implement measured 70 ns charge lifetime 
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3D Diamond MIP simulations 

19 

•  Simulated MIPs passing through the area of a quarter cell 
•  Divided the quarter cell into 15x15 µm squares, and simulated 

a MIP hit at the center of each square 
•  Able to plot the charge collected as function of position 
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3D Diamond MIP simulations 
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Weighting Field 
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•  Observed the generation of a bipolar signal in strips adjacent 
to the one with the hit due to the shape of the weighting field 
around the graphitic columns 

•  These signals integrate to zero due to charge conservation 
when no traps are present 
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3D Diamond MIP simulations 
•  Introduce a simple charge trapping model to mimic a 70 ns charge lifetime, 

now some charge is trapped before reaching electrodes resulting in a 
residual signal in the neighboring cells 

•  Negative signals observed in regions of intact cells, but below noise level 
•  In broken cell significantly more trapping, hence region with significant 

negative signals induced in neighboring cells, centered in position of 
missing bias column  
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3D Diamond MIP simulations 
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•  Overall observe that relatively uniform charge collection for 
intact cell, even with trapping 

•  In case of missing HV column, region centered around column 
with high negative signal, and lower overall signal, as observed 
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3D Diamond TRIBIC simulations 
•  Ran simulations at different 

voltages 
•  Simulations do not include 

traps (yet) 
•  Simulations included a 

surface metallization along 
the y direction to match the 
detector geometry used 

•  Applied bias voltage on the 
signal electrode, which was 
also read out; kept the HV 
electrode grounded  
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Semiconductor equations 
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∂n
∂t
=
1
q
∇⋅ Jn + (Gn − Rn )

∂p
∂t
= −

1
q
∇⋅ Jp + (Gp − Rp )

∇⋅E = ρs
εs

Electron Continuity Equation: 

Poisson Equation: 

Hole Continuity Equation: 

•  J – Current Density 
•  G – Carrier Generation rate 
•  R – Carrier Recombination rate 
•  ρs – Total space charge density 
•  εs – Permittivity of semiconductor 
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Pernegger Values 

•  µlowe = 1714 cm2 V−1 s−1  

•  µlowh = 2064 cm2 V −1 s−1   

•  vsate = 9.6 × 106 cm s−1  

•  vsath = 14.1 × 106 cm s−1  
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H. Pernegger et al. Charge-carrier properties in synthetic single-crystal diamond 
measured with the transient-current technique. Journal of Applied Physics, 97(7):–, 2005. 
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