Convexity, gauge-dependence, and tunneling rates

Carlos Tamarit, Durham IP³

In collaboration with Alexis Plascencia

arXiv:1610.07613

The effective action

The effective action Γ encodes the quantum dynamics of expectation values of scalar fields in the presence of sources.

$$ar{\phi} \equiv \langle \phi \rangle_J, \quad \Gamma[\bar{\phi}] = \int d^D x \left[\mathcal{O}(\partial \bar{\phi}) - V_{\mathrm{eff}}(\bar{\phi}) \right]$$

$$= \sum (1 \mathrm{PI \ diagrams}),$$

$$J = \frac{\delta \Gamma[\bar{\phi}]}{\delta \bar{\phi}}.$$

Its zero-momentum part, the effective potential, determines the vacuum structure of the theory.

$$J = 0, \partial \bar{\phi} = 0 \Rightarrow \frac{\partial V_{\text{eff}}(\phi)}{\partial \bar{\phi}} = 0.$$

Troubling issues with the effective action

It is gauge-dependent! [Jackiw]

How can one extract gauge-independent information?

It is a convex functional, meaning the effective potential is concave (positive second derivative everywhere) [Iliopoulos, Itzykson, Martin].

How can one talk about false vacua and tunnelling rates?

Gauge-dependence: Nielsen identities

The gauge dependence of the effective action is encoded by Nielsen identities [Nielsen, Kugo, Fukuda, ...]

At vacua,

$$\Gamma_{,j} = 0 \to \xi \frac{\partial \Gamma}{\partial \xi} [\bar{\phi}; \xi] = 0.$$

Energies and masses defined from V_{eff} at the vacuum configurations remain independent of the choice of gauge.

What about tunneling rates?

Tunneling rates

Tunneling à la Callan-Coleman

$$\gamma = \det(\text{Fluctuations})e^{-S_E[\varphi_b]}.$$

 φ_b : Classical solution to Euclidean equations of motion, using V_{clas} \neq V_{eff}, with boundary conditions set by false vacuum

What if false vacuum or instability is generated radiatively (e.g. SM)?

Veff suspected/assumed to play a role (e.g. SM)

Veff should be convex (no false vacua!!)

How to avoid double-counting of fluctuations?

No formal proof of gauge-independence at all orders. [Previous work by Metaxas and Weinberg, Garny and Konstandin,...]

 φ_b depends on the potential between minima, known to be gauge-dependent.

True-vacuum effective action

True-vacuum partition function Z[J]:

$$Z[J] = \exp iW[J] = \lim_{T \to \infty} \langle 0|e^{-iHT}|0\rangle^{J}$$

$$= \lim_{T \to \infty} \int [dq] [dq'] (\langle 0|q\rangle^{J}) \langle q|e^{-iHT}|q'\rangle^{J} \langle q'|0\rangle^{J}$$

$$= \int [dq] [dq'] \psi_{0}^{J}(q') \psi_{0}^{J\star}(q) \int_{q'}^{q} [d\phi] \exp i \left[\tilde{S}_{g}[\phi;\xi] + J_{j}\phi^{j}\right]$$
Usual single path integral
$$\Psi_{0}^{J}(q) \equiv \langle q|0\rangle^{J}$$

Vacuum wave function, usually ignored!

Expected to peak around local vacua in field-space

True-vacuum effective action

Multi-peak structure of the wave function means that Z[J] can be approximated by a sum of path integrals

$$Z[J] pprox \sum_{m,n=1}^{N} Z^{m,n}[J], \quad Z^{m,n}[J] = \mathcal{N}_{mn} \int_{q_0^{J,m}}^{q_0^{J,n}} [d\phi] \exp i \left[\tilde{S}_g[\phi;\xi] + J_j \phi^j \right]$$

Same for the true-vacuum effective action, explaining multi-path integral constructions of concave effective potentials! [Fujimoto et al, Bender et al,...]

$$\bar{\phi} = -i \frac{\delta \log Z[J]}{\delta J}, \ \Gamma[\bar{\phi}] = -i \log Z[J] - J_j \,\bar{\phi}^j,$$

$$\exp i\Gamma[\bar{\phi}; \xi] = \sum_{m,n=1}^{N} \mathcal{N}_{mn} \int_{q_0^{J,m} - \bar{\phi}_{\infty}}^{q_0^{J,n} - \bar{\phi}_{\infty}} [d\phi] \exp i \left[S_g[\bar{\phi}, \phi; \xi] - \Gamma_{,j}[\bar{\phi}; \xi] \phi^j \right]$$

False-vacuum effective action

By definition, a false vacuum state $|F\rangle$ has a localized field-space wavefunction. Thus one can define a partition function which can be approximated by a single path integral.

$$\begin{split} Z_{F}[J] &= \lim_{T \to \infty} \langle F|e^{-iHT}|F\rangle^{J} = e^{\underbrace{i\epsilon V}T} \\ &= \int [dq][dq']\psi_{F}^{J}(q')\psi_{F}^{J\star}(q) \int_{q'}^{q} [d\phi] \exp i \left[\tilde{S}_{g}[\phi;\xi] + J_{j}\phi^{j} \right] \\ &\approx \int_{q_{F}}^{q_{F}} [d\phi] \exp i \left[\tilde{S}_{g}[\phi;\xi] + J_{j}\phi^{j} \right] \end{split}$$

The vacuum being unstable, Z_F has an imaginary part related with the decay rate.

$$\gamma = -2 \operatorname{Im} \epsilon = -\frac{2}{VT} \operatorname{Re} \left(\log Z_F[0] \right).$$

False-vacuum effective action

One can construct a false vacuum effective action, which will be:

Approximated by a single path integral

Complex, not convex!

 $-\epsilon VT$, complex!

$$\bar{\phi} = -i \frac{\delta \log Z_F[J]}{\delta J}, \ \Gamma_F[\bar{\phi}] = -i \log Z_F[J] - J_j \,\bar{\phi}^j,$$

$$\exp i \Gamma_F[\bar{\phi}; \xi] = \int_0^0 [d\phi] \, \exp i \left[S_g[\bar{\phi}, \phi; \xi] - \Gamma_{F,j}[\bar{\phi}; \xi] \phi^j \right]$$

This is essentially the usual effective action used e.g. in the SM!

The resulting effective potential is complex, not necessarily convex, explaining why one can see radiatively generated false-vacua or instabilities (e.g. SM).

Tunneling and gauge-independence

The gauge dependence of Γ_F is encoded by its Nielsen identities. In particular, $\Gamma_F[\phi]$ is gauge-independent if ϕ solves the quantum equations of motion

$$\Gamma_{F,i}[\varphi(\xi);\xi] = 0 = -J_i \Rightarrow \xi \frac{\partial \Gamma_F}{\partial \xi}[\varphi(\xi);\xi] = 0.$$

The tunneling rate is related to the effective action evaluated at a solution to the quantum equations of motion! Gauge-independence follows immediately from the Nielsen identities.

$$\gamma = \frac{2}{VT} \operatorname{Im} \Gamma_F[\varphi_F(\xi); \xi].$$

Which solution exactly?

From the definition of γ in terms of $Z_F[0]$, being careful with the boundary conditions, we get a result that generalizes Callan and Coleman's sum over multiple bounce solutions. After rotating to Euclidean space:

$$\gamma = \frac{2}{VT^E} \operatorname{Im} e^{-\Gamma_F^E[\varphi^{1,E}(\xi);\xi]}.$$

 $\gamma = \frac{2}{VT^E} \text{ Im } e^{-\Gamma_F^E[\varphi^{1,E}(\xi);\xi]}. \qquad \text{[see also Garbrecht, Millington in theories without gauge fields]}$ Single quantum bounce solution with boundary conditions fixed by the false vacuum.

The exponential of the classical Euclidean action recovered in the semiclassical limit, $\Gamma_F = S_{cl} + O(\hbar)$.

The formula includes all quantum corrections. Clarifies how to compute tunneling rates with radiatively generated vacua or instabilities.

Summary

We clarified issues of convexity of the effective action and gaugeindependence of tunneling rates.

We introduced the notion of false-vacuum effective action. In contrast to the true-vacuum effective potential, the false-vacuum one is neither real nor convex.

False vacua and tunneling rates can only be defined and found with the false-vacuum effective action.

Tunneling rates are related to the exponential of the false-vacuum effective action evaluated at a generalized bounce solution. This encodes all quantum corrections and clarifies how to compute tunneling rates with radiatively generated vacua/instabilities (e.g. SM).

Our result stresses the role of the imaginary part of Γ_{F} (and V_{feff}).

First formal proof of gauge-independence of tunneling rates.