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The effective action

The effective action I" encodes the quantum dynamics of expectation
values of scalar fields in the presence of sources.
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Its zero-momentum part, the effective potential, determines the vacuum
structure of the theorv.
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Troubling issues with the effective action

It is gauge-dependent! [Jackiw]
How can one extract gauge-independent information?

[t is a convex functional, meaning the effective potential is concave (positive
second derivative everywhere) [Iliopoulos, Itzykson, Martin].

How can one talk about false vacua and tunnelling rates?

What about the SM?




Gauge-dependence: Nielsen identities

The gauge dependence of the effective action is encoded by Nielsen identities
[Nielsen, Kugo, Fukuda, ...]
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Energies and masses defined from V., at the vacuum configurations
remain independent of the choice of gauge.

What about tunneling rates?



Tunneling rates

Tunneling a la Callan-Coleman
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with boundary conditions set by false vacuum
What if false vacuum or instability is generated radiatively (e.g. SM)?
Veff suspected/assumed to play a role (e.g. SM)
Veff should be convex (no false vacual!)

How to avoid double-counting of fluctuations?

No formal proof of gauge-independence at all orders. [Previous work
by Metaxas and Weinberg, Garny and Konstandin,...]

©p depends on the potential between minima,
known to be gauge-dependent.



True-vacuum effective action

True-vacuum partition function Z[J]:
Identity insertions
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Vacuum wave function, usually ignored!
Expected to peak around local vacua in field-space




True-vacuum effective action
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Multi-peak structure of the
wave function means that Z[J]
can be approximated by a sum
d of path integrals
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Same for the true-vacuum effective action, explaining multi-path integral
constructions of concave effective potentials! [Fujimoto et al, Bender et al,...]
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False-vacuum effective action

By definition, a false vacuum state |F') has a localized field-space wave-
function. Thus one can define a partition function which can be approximated
by a single path integral.
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False-vacuum effective action

One can construct a false vacuum effective action, which will be:
Approximated by a single path integral

Complex, not convex! —eVT, complex!
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This is essentially the usual effective action used e.g. in the SM!

The resulting effective potential is complex, not necessarily convex ,

explaining why one can see radiatively generated false-vacua or instabilities
(e.g. SM).



Tunneling and gauge-independence

The gauge dependence of I', is encoded by its Nielsen identities. In

particular, I'_[¢g] is gauge-independent if ¢ solves the quantum equations
of motion
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The tunneling rate is related to the effective action evaluated at a
solution to the quantum equations of motion! Gauge-independence
follows immediately from the Nielsen identities.
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Which solution exactly?

From the definition of v in terms of Z_[0], being careful with the boundary

conditions, we get a result that generalizes Callan and Coleman's sum over
multiple bounce solutions. After rotating to Euclidean space:

[see also Garbrecht,
Millington in theories
without gauge fields]
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Single quantum bounce solutionf/with boundary conditions fixed by the
false vacuum.

The exponential of the classical Euclidean action recovered in the
semiclassical limit, I"' =S _+O(h).

The formula includes all quantum corrections. Clarifies how to compute
tunneling rates with radiatively generated vacua or instabilities.



Summary

We clarified issues of convexity of the effective action and gauge-
independence of tunneling rates.

We introduced the notion of false-vacuum effective action. In contrast to
the true-vacuum effective potential, the false-vacuum one is neither real
Nnor convex.

False vacua and tunneling rates can only be defined and found with the
false-vacuum effective action.

Tunneling rates are related to the exponential of the false-vacuum effective
action evaluated at a generalized bounce solution. This encodes all

quantum corrections and clarifies how to compute tunneling rates with
radiatively generated vacua/instabilities (e.g. SM).

Our result stresses the role of the imaginary part of I'_ (and V_).

First formal proof of gauge-independence of tunneling rates.
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