

Study of the rare decays of to B_(s) to muons pairs on Run 1 at ATLAS

Marcella Bona
(QMUL)
on behalf of the ATLAS collaboration

IoP joint annual HEPP and APP conference March 22nd, 2016

Motivations, predictions and previous results

- Decays of B⁰ and B⁰_s into two muons have to proceed through Flavour Changing Neutral Currents (FCNC)
 - → they are suppressed in the SM
- In addition, they are CKM and helicity suppressed.
- However, within the SM, they can be calculated with small theoretical uncertainties of less than 6-8%
 - latest determination includes NLO EM and NNLO QCD corrections

B(B⁰_S
$$\rightarrow \mu^{+}\mu^{-}$$
) = (3.65 ± 0.23) 10⁻⁹
B(B⁰ $\rightarrow \mu^{+}\mu^{-}$) = (1.06 ± 0.09) 10⁻¹⁰

Bobeth et al., PRL 112 (2104) 101801

- Perfect ground for indirect new physics searches:
 - virtual new physics particles can contribute to the loop
 - both enhancement and suppression effects are possible

Motivations, predictions and previous results

- Decays of B⁰ and B⁰_s into two muons have to proceed through Flavour Changing Neutral Currents (FCNC)
 - → they are suppressed in the SM
- In addition, they are CKM and helicity suppressed.
- However, within the SM, they can be calculated with small theoretical uncertainties of less than 6-8%
 - latest determination includes NLO EM and NNLO QCD corrections

B(B⁰_S
$$\rightarrow \mu^{+}\mu^{-}$$
) = (3.65 ± 0.23) 10⁻⁹
B(B⁰ $\rightarrow \mu^{+}\mu^{-}$) = (1.06 ± 0.09) 10⁻¹⁰

- Perfect ground for indirect new physics searches:
 - virtual new physics particles can contribute to the loop
 - both enhancement and suppression effects are possible
- Combination from CMS and LHCb:
 - 6σ observation for the B^0_S channel:

$$B(B_{s}^{0} \rightarrow \mu^{+}\mu^{-}) = (2.8_{-0.6}^{+0.7}) 10^{-9}$$

3σ evidence for the B⁰ channel:

$$B(B^0 \to \mu^+ \mu^-) = (3.9^{+1.6}_{-1.4}) 10^{-10}$$

some tension with the SM

ATLAS analysis on full Run 1 data

- Just off the press: we present here the ATLAS study on 25 fb⁻¹ of Run 1 data:
 - 4.9 fb⁻¹ of 7 TeV data taken in 2011
 - 20 fb⁻¹ of 8 TeV data taken in 2012
 - improved analysis strategy
- Analysis strategy:
 - dimuon triggers:
 - symmetric trigger requiring two muons with p_T > 4 GeV: good for 2011
 - \rightarrow prescaled in 2012, so three trigger categories merging asymmetric triggers ($p_T > 4$ and 6 GeV) and central events (one barrel muon with $|\eta| < 1.05$)
 - muon tracks reconstructed in both the inner detector and the muon spectrometer to improve mass resolution in muons in the end-cap region.
 - blinded analysis in the dimuon mass region: [5166, 5526] MeV
 - background fighting with MVA classifiers:
 - continuum-BDT for reducing the combinatorial background
 - fake-BDT for reducing the hadron misidentification as muons
 - signal extraction with a ML fit to the dimuon invariant mass distribution
 - normalisation with B[±] → J/ψ K[±] channel:
 yield, fragmentation and efficiency ratios

• normalisation with $B^{\pm} \rightarrow J/\psi K^{\pm}$ channel:

$$\begin{split} \mathcal{B}(B^0_{(s)} \!\to\! \mu^+ \mu^-) = & \underbrace{ \frac{N_{d(s)}}{\varepsilon_{\mu^+ \mu^-}}}_{\Sigma_{\mu^+ \mu^-}} \times \underbrace{ \frac{\varepsilon_{J/\psi K^+}}{N_{J/\psi K^+}}}_{\Sigma_{J/\psi K^+}} \times \underbrace{ \frac{f_u}{f_{d(s)}}}_{J/\psi K^+} \\ & \times \left[\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-) \right] \end{split}$$

• normalisation with $B^{\pm} \rightarrow J/\psi K^{\pm}$ channel:

$$\begin{split} \mathcal{B}(B_{(s)}^0 \!\to\! \mu^+ \mu^-) = & \frac{N_{d(s)}}{\varepsilon_{\mu^+ \mu^-}} \times \frac{\varepsilon_{J/\psi K^+}}{N_{J/\psi K^+}} \times \frac{f_u}{f_{d(s)}} \\ & \times \left[\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-) \right] \end{split}$$

correction for the efficiencies of the two channels

o normalisation with $B^{\pm} \rightarrow J/\psi$ K[±] channel:

$$\begin{split} \mathcal{B}(B^0_{(s)} \!\to\! \mu^+ \mu^-) &= \underbrace{\frac{N_{d(s)}}{\varepsilon_{\mu^+ \mu^-}}}_{\mathcal{S}_{\mu^+ \mu^-}} \times \underbrace{\frac{\varepsilon_{J/\psi K^+}}{N_{J/\psi K^+}}}_{\mathcal{S}_{J/\psi K^+}} \times \underbrace{\frac{f_u}{f_{d(s)}}}_{\mathcal{S}_{J/\psi} \to \mu^+ \mu^-)} \\ &\times \underbrace{\left[\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-)\right]}_{\mathcal{S}_{\mu^+ \mu^-}} \end{split}$$

- correction for the efficiencies of the two channels
- correction for the different hadronisation probabilities for B⁰s and B⁰ vs B[±]
- include the B[±] and J/ψ branching fractions

■ normalisation with $B^{\pm} \rightarrow J/\psi$ K[±] channel:

$$\begin{split} \mathcal{B}(B_{(s)}^0 \!\to\! \mu^+ \mu^-) = & \frac{N_{d(s)}}{\varepsilon_{\mu^+ \mu^-}} \times \frac{\varepsilon_{J/\psi K^+}}{N_{J/\psi K^+}} \times \frac{f_u}{f_{d(s)}} \\ & \times \left[\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-) \right] \end{split}$$

- correction for the efficiencies of the two channels
- correction for the different hadronisation probabilities for B⁰_S and B⁰ vs B[±]
- include the B[±] and J/ψ branching fractions
- Modify the above formula to take into account the three trigger categories and 2011 data
 - normalisation channel yield evaluated in each trigger and data category
 - same for the efficiency ratio

- Modify the above formula to take into account the three trigger categories and 2011 data
 - normalisation channel yield evaluated in each trigger and data category
 - same for the efficiency ratio

$$\mathcal{B}(B_{(s)}^{0} \to \mu^{+}\mu^{-}) = N_{d(s)} \times \frac{f_{u}}{f_{d(s)}} \times \frac{1}{\mathcal{D}_{\text{norm}}} \times \left[\mathcal{B}(B^{+} \to J/\psi K^{+}) \times \mathcal{B}(J/\psi \to \mu^{+}\mu^{-}) \right]$$

$$\mathcal{D}_{ ext{norm}} = \sum_k N_{J/\psi K^+}^k lpha_k \left(rac{arepsilon_{\mu^+\mu^-}}{arepsilon_{J/\psi K^+}}
ight)_k$$

- index k runs on the trigger and data categories
- ullet α_k takes into account the prescaling factors

Background contributions

In order of relative amplitude:

- combinatorial background from opposite-side muons:
 - dominant component
 - with smooth distribution across the dimuon invariant mass range
- partially reconstructed B decays:
 - Same Vertex (SV):
 B → μμX decays like B → K*μμ
 - Same Side (SS):
 semileptonic decay cascades
 (b → cμν → s(d)μμνν)
 - B_c decays: like B_c \rightarrow J/ψ μν
 - all these accumulate at low values of the dimuon invariant mass
 - constituted by real muons
- semileptonic B and B_s decays:
 - one real muon and a charged hadron.

- peaking background from charmless hadronic B_(S) decays:
 - $lue{}$ B decays into two hadrons h (kaons and pions): $B^0_{(S)} \rightarrow hh'$
 - smaller component, but perfectly overlaid with the signal in dimuon invariant mass

Fake-BDT classifier against hadron misidentification

- studied on simulated samples of B \rightarrow hh', signal B $\rightarrow \mu\mu$, and $\Lambda_b \rightarrow$ ph
- validated with data from $\phi \to KK$ and $B^{\pm} \to J/\psi K^{\pm}$ decays.
- the probability of misidentification of protons is negligible (< 0.01%)
- the probability of misidentification is about 0.28% for kaons and 0.12% for pions.

reduced by a factor 0.4 with a dedicated *fake-BD7* with an efficiency of prompt muons set at 95%

Use $B^{\pm} \rightarrow J/\psi K^{\pm}$ yield and efficiency ratio to normalise $B \rightarrow hh'$ (like for the signal): the total number of peaking-background events feeding into our events is 1.0±0.4

Continuum-BDT classifier against combinatorial bkg

- combinatorial background: muon pairs from uncorrelated decays of hadrons produced in the hadronisation of b and b quarks (or c and c quarks).
- separated from signal with a MVA classifier:
- 15 variables related to the B candidate, to the muons from the B candidate, to the other tracks from the same collision and to pile-up vertices.

- training of the continuum-BDT done on a large MC sample of uncorrelated b (c) hadrons and b (c) hadrons with forced decays into final states containing muons: 1.4G MC events
- tested on high-mass sideband data: not perfect data-MC agreement, but sample good enough for training, which is the sole use of this sample.
- B-related backgrounds behave like signal: SS-SV, semileptonic decays, peaking background

Normalisation B yield extraction

- applied fake-BDT and continuum-BDT selections (optimised for signal)
- yields extracted separately in the 4 categories:
 three trigger categories for 2012 and 2011 data
- unbinned maximum likelihood fit of the invariant mass distribution: $m_{J/\psi K} \rightarrow m_{\mu\mu K}$

Events / 25 MeV

Efficiency ratio $\varepsilon_{\mu\mu}/\varepsilon_{J/\psi K}$

$$\mathcal{D}_{ ext{norm}} = \sum_{m{k}} N_{m{J}/\psim{K}^+}^{m{k}} lpha_{m{k}} \left(rac{arepsilon_{\mu^+\mu^-}}{arepsilon_{m{J}/\psim{K}^+}}
ight)_{m{k}}$$

- in each category (k) the efficiency ratio is obtained from MC
- p_T and η MC spectra are tuned on data from the reference channels: included a systematic uncertainty from the statistical error from this reweighting
- ullet residual trigger efficiencies are extracted from tag&probe studies based on J/ ψ and Y
- systematic uncertainty from data-MC discrepancies: assessed from the data-MC comparisons of the discriminating variables used in the continuum-BDT: dominant systematic contribution to D_{norm}
 - isolation (based on p_T of tracks within a cone of ΔR <0.7) requires tuning in the B[±] mode: applied correction to the central value of the efficiency ratio.
- For B⁰_s:
 - additional correction due to lifetime difference between the B⁰_S mass eigenstates:
 lifetime taken from SM prediction and efficiency correction (+4%) taken from MC
 - Total correction to the central value of the efficiency ratio:
 +3% for B⁰ and -1% for B⁰_S (including the lifetime correction)
 - Total systematic uncertainty ±5.9% on the normalisation term D_{norm}

Signal yield extraction

- signal yields (N_d and N_S) are extracted with a unbinned maximum likelihood fit to the dimuon invariant mass distribution
- the fit is performed simultaneously in three categories corresponding to three continuum-BDT ranges (continuum-BDT bins) chosen for constant signal efficiency (18% including corrections)

- signal: two Gaussian distributions with common mean, shape constrained across continuum-BDT bins and fixed to the MC shapes, varied for systematic uncertainty
- SS-SV background: exponential distribution, parameters floated in the fit, shape constrained across the continuum-BDT bins, independent normalisations.
- peaking background: two Gaussian distributions constrained across continuum-BDT bins and fixed to the MC shapes, normalisation fixed to 1.0±0.4 total events
- continuum background: first order polynomial, parameters floated in the fit, shape loosely constrained across the continuum-BDT bins, independent normalisations
- systematics obtained by varying all the above:

$$\sigma_{\text{syst}}$$
 (N_S) = $\sqrt{2^2 + (0.06 \times N_S)^2}$ and σ_{syst} (N_d) = 3 events

Signal yield extraction

- yields constrained to be positive:
 - $N_S = 11 \text{ and } N_d = 0$
- no contraints on positive yields:
 - $N_S = 16 \pm 12$ and $N_d = -11 \pm 9$
- fewer B⁰_S events than expected
- no B⁰ events
- Expected signal from SM predictions:
 - $N_S = 41 \text{ and } N_d = 5$

Events / 40 MeV

Events / 40 MeV

Branching fraction extraction

$$\begin{split} \mathcal{B}(B_{(s)}^0 \to \mu^+ \mu^-) = & N_{d(s)} \times \frac{f_u}{f_{d(s)}} \times \frac{1}{\mathcal{D}_{\text{norm}}} \\ & \times \left[\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-) \right] \end{split}$$

$$\mathcal{D}_{ ext{norm}} = \sum_{k} N_{J/\psi K^{+}}^{k} lpha_{k} \left(rac{arepsilon_{\mu^{+}\mu^{-}}}{arepsilon_{J/\psi K^{+}}}
ight)_{k}$$

The normalization includes:

- B[±] branching fraction (world averages)
- the fragmentation fraction f_u/f_s from the ATLAS measurement of f_s/f_d ATLAS performed in the same p_T , η range: 0.240 \pm 0.020 (8% systematic) PRL 115 (2015) 262001
- the efficiency ratios and B[±] yields in the D_{norm} term
- The total uncertainty in the normalisation is
 - $\pm 11\%$ for BR(B⁰_S $\rightarrow \mu^{+}\mu^{-}$)
 - \pm 7% for BR(B⁰ $\rightarrow \mu^{+}\mu^{-}$)

Result for the B⁰_s branching fraction

- central value is obtained within the boundary of non-negative branching fractions
- the errors are obtained by means of a frequentist belt, using pseudo-MC experiments and include both statistic and systematic error. The systematic uncertainty is

$$\sigma_{\text{syst}} = \pm 0.3 \times 10^{-9}$$

$$B(B^0_S \to \mu^+ \mu^-) = 0.9^{+1.1}_{-0.8} \times 10^{-9}$$

- the upper limit from CLs is
 - B(B 0 _S $\rightarrow \mu^{+}\mu^{-}$) < 3.0 × 10 $^{-9}$ at 95% CL
- the observed compatibility with the null hypothesis (only background) corresponds to
 - $p = 0.08 (1.4\sigma)$
- the expectation for a SM signal is
 - $p = 0.0011 (3.1\sigma)$

Result for the B⁰ branching fraction

upper limit set using CLs technique

$$B(B^0 \to \mu^+ \mu^-) < 4.2 \times 10^{-10} \text{ at } 95\% \text{ CL}$$

- no signal, $B(B^0_S \to \mu^+\mu^-)$ left free to be determined in the fit
- CLb is ≈ 0.15 for B(B⁰ $\rightarrow \mu^+\mu^-$) near 0:
 - -1σ fluctuation of background
- expected limit $< 5.7^{+2.1}_{-1.2} \times 10^{-10}$
- the limit is higher than the SM prediction
 - \bullet B(B⁰)_{SM} =(1.06 ± 0.09)×10⁻¹⁰
- the expected significance for $B(B^0 \to \mu^+\mu^-)$ assuming the SM branching fraction is 0.2σ

Conclusions

back-up slides