DEEP UNDERGROUND NEUTRINO EXPERIMENT

Cosmogenic simulations for the DUNE far detector and particle identification in the 35 ton prototype

Karl Warburton

University of Sheffield

IOP HEPP&APP Conference, University of Sussex, Brighton

22nd March 2016

22/03/2016

Overview

- Deep Underground Neutrino Experiment (DUNE) overview
- Reconstruction in Liquid Argon Time Projection Chambers (LArTPCs)
- Cosmogenic background at the DUNE far detector
- The 35 ton prototype at Fermilab
- Particle Identification in the 35 ton prototype
- Summary

Deep Underground Neutrino Experiment (DUNE)

- The flagship experiment of America's Neutrino program, due to start taking physics data in 2026 with 10 kton active LAr, full completion of four modules by early 2030's.
- Staged construction of 4 x 10 kton fiducial LAr detectors, the first of which will be a single phase LArTPC.
- Will have a high precision near detector, technology still to be decided.
- Designed to have a very rich neutrino oscillation programme, plus searches for nucleon decay and neutrinos from supernova bursts.

Reconstruction in LArTPCs

- LArTPCs are often compared to bubble chambers due to the high resolution of reconstructed tracks due to dense fully active detector medium.
- Collection and induction wire planes see pulses from ionisation electrons.
- Pulses are interpreted as hits on wires by reconstruction algorithms.
- Hits are combined into 2D clusters and then into 3D objects such as tracks.
- This requires;
 - ✤ A high electric field (500 V cm⁻¹)
 - High LAr purity
 - High signal to noise on wire planes
 - Sophisticated reconstruction algorithms.

A reconstructed event from a cosmic induced decay in Icarus.

Antonello et al., Adv. High Energy Phys., vol. 2013, p. 260820.

Observing proton decay in DUNE

- High quality reconstruction means that with sufficient background rejection a single event would be enough to signal an observation.
- Two of the most prominent signals searched for are:

 $p \rightarrow e^+ \pi^0$

$$p \to K^+ \overline{\nu}$$

- DUNE will be highly sensitive to the K⁺ decay mode, as the whole decay of the K⁺ would be fully reconstructable.
 Soudan Frejus Kamiokande IMB
 Super-K Hyp
- A decaying Kaon is identified by looking at its energy loss as a function of distance travelled.
- This is much more difficult in water Cherenkov detectors where the momentum is below threshold.

"DUNE CDR document" ArXiv:1512.06148

Simulating cosmogenic background

- All physics goals require detailed estimations of cosmogenically induced background.
- Siting the detector at 4850 ft level vastly reduces background.
- MUSUN (MUon Simulation Underground) which takes the output from MUSIC (MUon SImulation Code), V. Kudryavtsev ArXiv: 0810.4635, has been incorporated into the software used by DUNE,. Monte Carlo simulations are being performed using this software.
- Muons are generated on a cuboid in the rock surrounding the detector and propagated using GEANT4.
- A rock density of 2.7 g cm⁻³ is used, and the surface profile is considered.

Spectrum of simulated muons

The 35 ton prototype

- A detector of the scale of DUNE requires significant prototyping as the design is different from other single phase LArTPCs.
- Also serves as verification of reconstruction algorithms and a test for PID.

Above: Picture inside the 35 ton. Left: Schematic of the 35 ton.

The 35 ton prototype

- Run 1 (Jan Mar 2014), was the first LAr vessel built using a membrane cryostat. Achieved an electron lifetime of 3 ms.
- Run 2 (Jan 2016 now), installed a detector to be tested with cosmic rays into the cryostat. It has many novel features:
 - FR4 printed circuit board field cage
 - Wrapped wire planes
 - Multiple drift volumes
 - Cold electronics ASICs are in the cold
 - Triggerless DAQ operation
 - This is the first time that many of these systems have been used in an integrated detector.

Particle Identification in the 35 ton

- Bethe-Bloch equation describes energy loss per unit length as a function of energy in different materials.
- It is particle dependant, as shown by the particle dependant scales.
- LAr (1.4 g cm⁻³) is slightly less dense than Carbon (1.8 g cm⁻³)
- There is a large difference in the functions for muons and protons, so should be able to distinguish between them in the 35 ton.

A particle identification metric - PIDA

- Bethe-Bloch equation has power law dependence near stopping point.
- Table shows weak dependence on b, so set
 b = 0.42, and model dE/dx calculation by:

 $(dE/dx)_{hyp} = AR^{b}$

Calculate a value for PIDA by:

For each space point i, calculate

$$A_i = (dE/dx)_{calo} \times R^{0.42}$$

Define PIDA as the average value for the track.

Particle	A	b
	MeV/cm^{1-b}	
pion	8	-0.37
kaon	14	-0.41
proton	17	-0.42
deuteron	25	-0.43

R. Acciarri et al., arXiv:1306.1712

Calculated PIDA for a CRY sample

There are two tracking algorithms used by the 35 ton:

- PMTrack, Antonello et al, ArXiv:1210.5089.
- Pandora, Marshall & Thompson, arXiv:1506.05348.
- Plots show a continuous detector live time of 40 minutes.
- Both reconstruct tracks with lengths greater than 10 cm excellently, but struggle with the shortest tracks, where they both correctly reconstruct around 25% of tracks.

Considerations from PIDA plots

- The peak at 6 MeV cm for protons is due to Minimally Ionising Particles (MIPs). Some of these are broken tracks, as start and end positions are correlated to TPC boundaries.
 - * Fixing broken tracks may increase resolution of calculated PIDA.
 - Imposing a minimum number of unique hits would also increase the resolution of the calculated PIDA values, as tracks with few hits are likely to be inaccurate.
 - An exact calculation of track end point, could increase resolution.
- Calculation of PIDA requires the track to stop in the detector, introducing a fiducial cut on the track end
 position would ensure that particles stop.
- Identifying a proton sample requires separating them from the much more numerous muons. This could be achieved by:
 - A fiducial cut on starting position will also remove externally produced particles, which are more likely to be muons.
 - Proton tracks are inherently short, especially if one discounts any externally produced particles. A cut
 on track length would remove muons.
 - Remove lightly ionising particles by comparing reconstructed track energy with an estimated proton energy for a track of that length.

Features of the 35 ton data not yet simulated

- Signal/noise was lower than expected, simulation is yet to take this into account.
 - Mitigation is being worked on, including a new method of reconstructing hits which appears to reduce effect of noise on induction planes significantly.
- Data has largely been triggered off horizontal cosmic ray counters, but simulation includes vertical muons and has a larger payload size.
 - The online to offline data reformatter has been set up to run on Monte Carlo. Use of the reformatter on Monte Carlo allows a smaller payload to be extracted from the initial data.
- Detector is not yet operating at design field strength. This reduces the strength of measured signals.
 - Plans to increase the field this week.

A deconvoluted hit from 35 ton data after the initial noise mitigation has been applied

Summary

- LArTPCs are capable of excellent reconstruction even at low energies.
- DUNE will use a LArTPC to look for neutrino physics and nucleon decay.
 - Detailed simulation of cosmogenic background is vital for both of these.
 - A widely used package (MUSUN) has been incorporated into LArSoft for use by DUNE.
 - Simulations for the first 10 kton single phase LArTPC are underway.
- A prototype has been built at Fermilab and is taking cosmogenic data.
 - A study will be performed once the run has finished attempting to perform particle identification.

Backups

- A step-by-step guide as to how hits are combined into tracks.
 - First image shows raw signals
 - Second image the signals being reconstructed into hits
 - Third image shows clusters being combined into tracks.
- The 35 ton has and DUNE will have, a step between images 2 and 3 where due to the wrapped wires, hits have to be disambiguated as to which part of a wire the hit was on.

Reconstruction efficiencies

- The reconstruction efficiency for all particles in the cryostat.
- No more than 1 track is included for each particle, so if one particle is reconstructed as two tracks only the largest is considered.
- Criteria for being considered a well reconstructed track;
 - * MC / Reco length 0.75 1.25
 - No prior track assigned to that MCParticle.
- Pandora has low efficiency at large lengths as is not stitching tracks which cross the APAs at large times.

Some simple cuts on PIDA

Simple cuts applied to the raw PIDA calculations. PMTrack is shown on the left, pandora on the right.

A 5 cm fiducial cut on detector edges, a minimum of 10 track hits and a track length of less than 300 cm.