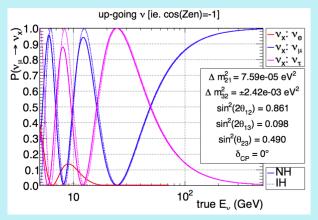

Precision Neutrino Oscillation Physics at the South Pole

S. Wren - The University of Manchester

on behalf of the IceCube-DeepCore-PINGU Collaboration

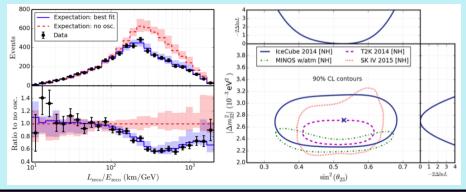


- Produces ν_{μ} and ν_{e} in \sim 2:1 ratio over a wide range of energies.
- These come to the detector from all over the atmosphere, giving the neutrinos many baselines.

Neutrino Oscillations at the South Pole

- Neutrinos detected by Cherenkov effect of secondary particles in the South Pole ice.
- \blacktriangleright Collects $\sim 10^3-10^4$ neutrinos per year at analysis level.

 Maximum ν_μ disappearance happens ~ 25 GeV.

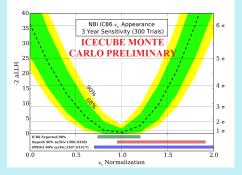

MANCHESTER

- Can measure ν_τ appearance through CC channel.
- Ordering-dependent matter effects at ~ 12 GeV.


Current Oscillations Result

- Focus on ν_μ CC events with clear, upgoing tracks - reduces contamination from cascades
- Reconstruction based on unscattered photons - reduces systematic effect of medium.
- Gives 10° and 25% resolutions in neutrino zenith and energy.
- 5174 events in 953 days.
- ► Data fit in 2D space, (E, θ) . Gives $\chi^2/ndf = 54.9/56$.

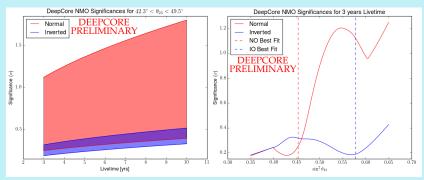
- Can get more out of data by relaxing event selection. Expect an order of magnitude increase in statistics.
- Cascade-like events have worse directional reconstruction. Separate track-like and cascade-like samples and fit separately.
- ► Requires better understanding of systematics and the ice properties.


 Substantial improvement in measurement expected.

MANCHESTER

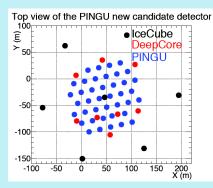
 Systematic and ice property models still being refined which may affect the expected contours.

- \blacktriangleright Higher statistics datasets should also allow for better measurements of ν_{τ} appearance.
- Measurement critical in testing unitarity of neutrino oscillations.



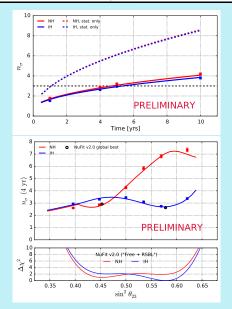
- Expected sensitivity will be world's best.
- Refinement of systematics also still ongoing, but shouldn't significantly deteriorate the result.

Neutrino Mass Ordering Studies



- Atmospheric neutrino datasets also sensitive to neutrino mass ordering (NMO) due to a combination of the MSW effect and parametric resonances.
- DeepCore can be used to begin to probe this effect.
- Significance low, but can be used to understand systematics and prove measurement is possible.

- ► The Precision IceCube Next Generation Upgrade.
- Lower the detection threshold to ~ 1 GeV.
- Primary goal determine the neutrino mass ordering.
- Other physics includes:
 - Precision neutrino physics.
 - Dark matter searches.
 - Earth tomography studies.
- 40 strings. Spacing \sim 20m.
- DOMs per string not finalised cost of extra DOMs is small.
 Will likely see ~90 DOMs per string.
- Additional calibration devices will be included.



PINGU and the NMO

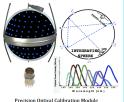
- Taking Nu-Fit 2014 as fiducial oscillations model, time to 3σ for either true ordering is ~ 5 years from deployment.
- Both a fast Δχ²-based analysis and a full LLR analysis have been performed and are in good agreement.
- Considering the full range of allowed values of θ₂₃ shows us Nu-Fit is likely most pessimistic case.

- Even with only the current IceCube-DeepCore data, there is still much more neutrino physics to be probed:
 - Non-standard interactions Looking for potential lepton non-universality due to hypothetical high mass bosons.
 - Sterile neutrinos Both from effects at energies ~ 20 GeV (like those already constrained by SuperK in ref [2]) and large matter resonances ~ 1 TeV. A publication concerning the latter is imminent!
 - Large extra dimensions The result of Kaluza-Klein models of sterile neutrinos.
 - Lorentz-Violating oscillations As a result of, for example, the standard-model extension.
- IceCube is perfectly suited for such searches because it can probe higher energy neutrinos which have also experienced significant matter effects.

- DeepCore produced the first statistically significant measurement of neutrino oscillations for energies above 20 GeV.
- Since this the improvements in the measurements have been, and continue to be, quite substantial.
- There is a plethora of physics to probe with atmospheric neutrinos (and above!) including many exotic effects.
- With the planned PINGU extension to IceCube-DeepCore, the NMO could be determined on a short timescale.
- The future of neutrino oscillation physics at the South Pole should be very interesting!

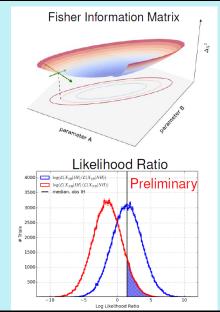
- A. Esmaili et al, Probing Non-Standard Interaction of Neutrinos with IceCube and DeepCore, arXiv:1304.1042 (2013).
- K. Abe et al, Limits on Sterile Neutrino Mixing using Atmospheric Neutrinos in Super-Kamiokande, arXiv:1410.2008 (2014).
- 3. A. Esmaili et al, *Probing Large Extra Dimensions With IceCube*, arXiv:1409.3502 (2014).
- R. Abbasi et al, Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube, arXiv:1010.4096 (2010).
- 5. M. G. Aartsen et al, *Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube*, arXiv:1502.03376 (2015).

BACKUP


- LED Flashers Can be used to check ice scattering/absorption, DOM efficiency/directionality/timing and to calibrate geometry.
- Onboard cameras Images of the surrounding ice help check models of anisotropic scattering.
- POCAM Isotropic light source with well-defined intensity for DOM calibration.

IceCube DOM, LED flashers circled

Picture of hole ice from IceCube "Swedish camera"

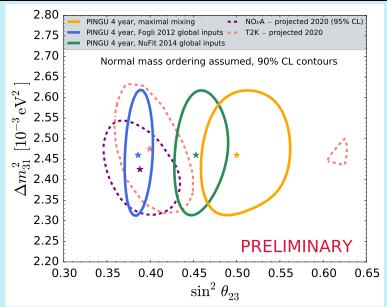


S. Wren - The University of Manchester IoP Joint HEPP and APP Conference - 2016-03-22

Estimating Sensitivity to the NMO

- Fisher information matrix Uses parameterised detector response based on full simulation. The gradients in likelihood space are used to calculate significances. This method is very quick.
- Likelihood ratio analysis uses full Monte Carlo. No assumptions need to be made here and so is the more robust method. For every included systematic this method gets slower.
- For a common set of systematics, these agree!

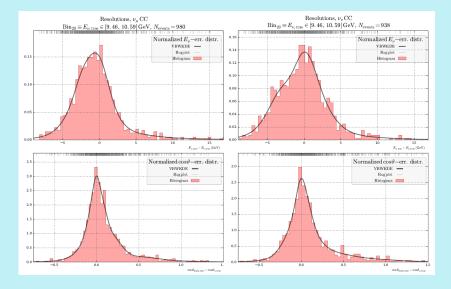
PINGU LLR Results



livetime (years)	# Trials	n_{σ} (NO/IO)	$\Delta n_{\sigma}/n_{\sigma}$ (NO/IO) (%)
1	3200	1.8/1.5	1.9/2.0
4	3190	2.9/2.6	1.9/1.9
5	2680	3.2/2.9	2.1/2.0
10	1420	4.2/3.8	2.8/2.8

θ_{23} (°)	# Trials	n_{σ} (NO/IO)	$\Delta n_{\sigma}/n_{\sigma}$ (NO/IO) (%)
39	2980	2.6/2.9	1.9/2.0
42	2870	2.9/3.3	1.9/2.0
42.3	3190	2.9 (NO)	1.9 (NO)
45	1750	4.3/3.4	2.5/2.6
47	2520	5.8/3.1	2.2/2.2
49	2760	6.8/2.7	2.1/2.0
49.5	3190	2.6 (IO)	1.9 (IO)
52	2540	7.3/3.4	2.2/2.1

PINGU Atmospheric Oscillations



- Systematics removed in groups to test relative effects.
- Oscillations allows Δm_{31}^2 , θ_{23} and θ_{13} to float.
- Flux allows ν_e/ν_μ ratio and atmospheric index to float.
- Detector allows the overall normalisation and the uncertainty on the overall energy scale calibration to float.
- All contains all of the above plus an additional uncertainty on the $\nu/\bar{\nu}$ ratio.

	LL	R	$\overline{\Delta \chi 2}$		
Systematic	$4 \text{ yr } n_{\sigma} \text{ (NH)}$	4 yr n_{σ} (IH)	$4 \text{ yr } n_{\sigma} \text{ (NH)}$	$4 \text{ yr } \sigma \text{ (IH)}$	
None	5.4	5.5	5.5	5.5	
Flux only	5.1	5.2	5.2	5.1	
Detector only	4.4	4.6	4.6	4.6	
Oscillation only	3.6	3.2	3.5	3.2	
All	2.9	2.6	2.8	2.7	

