

First oscillation results from NOvA

IOP, 22nd March 2016

Luke Vinton, University of Sussex

Outline

- ♦ Neutrino oscillations
- NOvA detectors
- \diamond Why off-axis?
- ♦ muon neutrino disappearance
 - \diamond energy estimation
 - \diamond near to far energy extrapolation
 - ♦ results
- ♦ electron neutrino appearance♦ results

long baseline neutrino oscillations

$$\nu_{\mu}$$
 disappearance
 $P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \sin^2 2\theta_{23} \sin^2(\Delta m_{32}^2 L/4E)$

experimental data is consistent with unity \rightarrow "maximal mixing"

$$\begin{array}{l}
\nu_{e} \text{ appearance} \\
P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \sin^{2} (\Delta m_{32}^{2} L/4E) \\
\text{Daya Bay reactor experiment:} \\
\sin^{2}(2\theta_{13}) = 0.084 \pm 0.005
\end{array} \begin{array}{l}
\dots \text{ + potentially} \\
\text{large neutrino} \\
\text{CP and matter} \\
\text{effect} \\
\text{modifications}
\end{array}$$

US University of Sussex

Luke Vinton

long-baseline neutrino oscillations

$$\theta_{13} > 0 \Longrightarrow \nu_{\mu} \to \nu_{e}$$

Makes feasible long-baseline measurements of:

neutrino mass hierarchy

via matter effects that enhance (suppress) electron neutrino appearance if the hierarchy is normal (inverted).

CP violation

via dependence of $P(v_u \rightarrow v_e)$ on CP phase δ

ν_3 flavour mixing

via leading-order factor $\sin^2(\theta_{23})$

Luke Vinton

NOvA detectors

Two functionally identical detectors

- fine grained
- low Z
- highly active tracking calorimeters

14kt far detector is 8.8kt of liquid scintillator held in 5.2kt of PVC cells

 \rightarrow 63% active scintillator / 37% PVC

32-pixel APD

32 fibre pairs from 32 cells

NuMI off-axis beam

NOvA detectors are sited 14 mrad off the NuMI beam axis

The medium-energy NuMI tune yields a narrow 2 GeV neutrino spectrum at the NOvA detectors

- → Reduced NC and nue CC backgrounds for oscillation analyses
- → Enhances neutrino flux in region of the first oscillation maximum

Select and measure the **energy** of **contained muon neutrino charged current** events in each detector

Measure oscillation parameters using the difference between the **near and far energy spectra**

Muon neutrino CC selection

<u>Muon ID</u>

muons identified using a knearest-neighbour algorithm with four input variables:

- track length
- dE/dx along track
- scattering along track
- track-only plane fraction

Select events with Muon ID > 0.75

About 0.5 M events selected in the **near detector**. Energy spectrum extrapolated to the far detector...

33 events selected in the Far Detector

In absence of neutrino oscillations, would expect 212 events

 \rightarrow Clear observation of v_{μ} disappearance

University of Sussex

Luke Vinton

Electron neutrino appearance

Use near detector electron neutrino CC candidates to predict beam background in the far detector

Oscillation parameters found by counting number of far detector electron neutrino events above predicted background

Electron neutrino event selection

Two independent electron neutrino selection methods:

Likelihood Identification (LID)

(chosen as primary selection prior to un-blinding)

dE/dx likelihoods calculated for longitudinal and transverse slices of leading shower under multiple particle hypotheses

Likelihoods feed an artificial neutral network along with kinematic and topological info: e.g., energy near vertex, shower angle, vertexto-shower gap

University of Sussex

Library Event Matching (LEM)

Spatial pattern of energy deposition is compared to $\sim 10^8$ simulated events

Properties of the best matched library events are put into a decision tree to form a discriminant

Electron neutrino appearance

Electron neutrino appearance

- Δm_{32}^2 varied by *new NOvA measurement*
- $\sin^2\theta_{23} = 0.5$

US

University of !

Luke Vinton

mildly disfavored (>1 σ)

Summary

With 2.74 x 10²⁰ POT-equiv. exposure:

- Clear muon neutrino disappearance signature
- 8% measurement of atm. mass splitting, and θ_{23} measurement consistent with T2K, MINOS and maximal mixing
- Electron neutrino appearance signal at 3.3σ
- At max. mixing, disfavour IH for δ : $[0, 0.6\pi]$
- 2nd result with double the statistics planned for the summer

nue first results: P. Adamson et al. [NOvA Collaboration], arxiv/1601.05022 [hep-ex] numu first results: P. Adamson et al. [NOvA Collaboration], arxiv/1601.05037 [hep-ex] LEM: C. Backhouse, R. B. Patterson, arXiv:1501.00968v2 [physics.ins-det]

Energy estimation

Reconstructed muon energy found from track length:

 $length \to E_{\mu}$

Hadronic energy:

 $\sum_{cells} E_{visible} \to E_{had}$

Reconstructed neutrino energy:

$$E_{\nu} = E_{\mu} + E_{had.}$$

energy resolution at beam peak ~7%

Far detector prediction

- Estimate underlying true energy distribution of selected ND events 1.
- Multiply by expected Far/Near event ratio and $v_{\mu} \rightarrow v_{\mu}$ survival 2. probability as a function of energy
- **3.** Convert FD true energy distribution into predicted FD reco. energy distribution

University of Sussex

Systematic uncertainties

Electron neutrino appearance LID – LEM consistency

- Both prefer normal hierarchy
- All 6 events selected by LID are also selected by LEM which selects 11
- Using the trinomial distribution and the number of simulated events that overlap between the selectors,
 - We compute the probability of observing this overlap configuration (or a less likely one) as 7.8%

Electron neutrino CC event selection

LID: Likelihood Identification

dE/dx likelihoods calculated for longitudinal and transverse slices of leading shower under multiple particle hypotheses Likelihoods feed an artificial neural network along with kinematic and topological info:

e.g. energy near vertex, shower angle, vertex-to-shower gap

NOvA Preliminary

Electron neutrino cross-section

Luke Vinton