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The idea of composite two Higgs doublet model

Higgs boson emerges as a pseudo-Nambu-Goldstone Boson

(pNGB) from a new strong interaction at the compositeness

scale f .

The Composite 2 Higgs Doublet Model (C2HDM) based on

SO(6)/SO(4)× SO(2) coset developing 8 pNGBs, which are

identi�ed with the (composite) two Higgs doublet �elds.

Symmetry breaking occurs in two steps
1 Spontaneously global symmetry breaking

SO(6)
f→ SO(4)× SO(2) at scale f .

2 Electroweak symmetry breaking is triggered by coupling of the
SM particles to the composite sector via the
Coleman-Weinberg (CW) potential at loop levels.

Minimal composite Higgs model (with a single Higgs doublet)

can explain hierarchy problem by its pNGB nature. It's

remarkable motivation to study C2HDM for describing

presence of extra Higgs particles as pNGBs and explain their

mass di�erences.



E�ective Lagrangian approach for C2HDM

⇒ The SO(6) invariant e�ective kinetic Lagrangian, can be

constructed by the analogue of the construction in non-linear sigma

models developed by Callan-Coleman-Wess-Zumino (CCWZ) as

Lkin =
f 2

4
(d âα)µ(d âα)µ (d âα)µ = i tr(U†DµUT

â
α), where α = 1, 2. â = 1, 4.

U=exp(i Π
f

), Π≡
√
2hâαT

â
α=−i


O4×4 hâ1 hâ2
−hâ1 0 0

−hâ2 0 0

, Φα≡ 1√
2

h2α + ih1α
h4α − ih3α

≡
φ+

α

φ0α



i(d 1̂α)µ + (d 2̂α)µ = −2

f

[
∂µφ

+
α − i

g√
2
φ0αW

+
µ − igZ

(
1

2
− s2W

)
φ+
α

]
+

O(1/f 3),

− i(d 3̂α)µ + (d 4̂α)µ =
2

f

[
∂µφ

0
α − i

g√
2
φ+
αW

−
µ + i

g
Z

2
φ0αZµ

]
+O(1/f 3).



⇒ Modi�ed Higgs to gauge boson couplings from SM and E2HDM

λC2HDM
hW+W−

λSM
hW+W−

=
√
1− ξ cos θ

λC2HDM
HW+W−

λE2HDM
HW+W−

=
√
1− ξ

λC2HDM
hH+W−

λE2HDM
hH+W−

=

√
1− 1

6
ξ tan θ

where ξ = υ2

f 2
with υ ' 246GeV , θ is mixing angle between

CP-even states.



Perturbative Unitarity

Perturbative unitarity gives a bound on the parameters of the

model.

Equivalence theorem the replacement WL,ZL− > G±G 0 gives

the same amplitude up to O(s0).
(Cornwall, Lewin,Tiktopoulos (1974)

We calculate the S-wave amplitude matrix for the all possible

2-to-2 body elastic scalar boson scatterings.

M = 16πΣ∞J=0(2J + 1)PJ(cos θ)aJ(s)

Perturbative unitarity bound |aJ |2 ≤
1

2



Perturbative Unitarity violated

⇒ A(VLVL → VLVL) grows with energy due to modi�ed hVLVL,

unitarity is lost in the C2HDM.

M(W+
L
W−

L
→W+

L
W−

L
)Higgs

= − s

2v2SM
(1− cφ)(1− ξ)− 2

v2SM
(1− ξ)(m2

hc
2
θ + m2

Hs
2
θ ) +O(s−1),

where φ is the scattering angle.



Perturbative Unitarity in W+
L
W
−
L

scattering

⇒ S-wave amplitude a0 for WLWL scattering:

a0(W+
L
W

−
L
→W

+
L
W

−
L

) =
s

32πυ2
ξ − 1

8πυ2
(m2

h cos
2 θ + m

2

H sin2 θ)(1− ξ) ≤ 1

2
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Fig:S-wave amplitude for the

G+G− → G+G− process as a

function of
√
s in the case of

cos θ = 1 and f = 500 GeV

(black), 750 GeV (blue), 1000

GeV (red). The solid (dashed)

curves are the result with

(without) O(ξs0) term.



Perturbative Unitarity In (H+H− → H+H−) Scattering I

M(H+H− → H+H−) =

[
s

2υ2
SM

ξ(1 + cφ) −

↘
Kinetic Term

m2
H±

υ2
SM

ξ(
2

3
+ 4cφ) +

↘
Kinetic and Potential Term

λH+H−H+H−

↓
Emerges From Potential Term

]
+O(s−1).
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Figure : S-wave amplitude for the H+H− → H+H− process as a function of
√
s in the case

of cos θ = 1, tanβ = 1 and f = 500 (black), 750 (blue) and 1000 GeV (red). The solid
(dashed) curves are the results with (without) O(ξs0) term. The left, center and right panels
show the results for mΦ(mA = mH = mH±) = M = 500, 1000 and 1500 GeV, respectively.

λH+H−H+H− = [
2

υ2
4M2 cot2 2β −m2

h(cθ + 2 cot 2β sin θ)2)−m
2

H(sθ − 2 cot 2βcθ)2](1− ξ

3
)

+
4c2β

3υ2s22β
[m2

h(cθs2β + 2sθc2β)sθ + m2
H(2cθc2β − sθs2β)cθ]ξ.



Perturbative Unitarity in (H+H− → H+H−) scattering II
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Figure : Unitarity bound on the (
√
s-mΦ) plane from the requirement of

|a0(H+H− → H+H−)| < 1/2 in the case of M = mΦ. In the left, center
and right panels, we take (cos θ, tanβ) = (1, 1), (0.99,1) and (1,2),
respectively. The solid (dashed) curves are the result with (without)
O(ξs0) terms.

According to the results we have shown so far, we can

conclude that the O(ξs0) contributions are not so important

as long as we consider the case mφ ≤ 1 TeV and
√
s ≥ mφ.



Perturbative Unitarity in (G+G− → G+G−) process with
and without O(1/s) term

Figure : Allowed regions from perturbative unitarity in the plane
(
√
s,m

H
) from G+G− → G+G− scattering amplitudes within the

C2HDM. We take cos θ = 0.99, tanβ = 1 and mH = mA = mH± = M.
The grey regions are obtained by using the exact formulae (with O(1/s)
terms), the green ones by neglecting O(1/s) terms. The left, center and
right panels show the cases with f = 3000 GeV, 5000 GeV and in�nity
(corresponding to the E2HDM).

If we focus on the region of
√
s ≥ 1TeV and mφ ≤ 1TeV ,

O(s0ξ) and O(s−1) terms can be neglected safely.



S-wave amplitude matrix for all the 2-to-2 body
(pseudo)scalar boson scattering channels

⇒ We calculate all the two body scalar boson scattering amplitudes by
keeping the O(ξs) and O(ξ0s0) contributions.
⇒ 14 neutral channels are expressed by

G
+
G

−,
GG√
2
,
hh√
2
, hG ,H+

H
−,
AA√
2
,
HH√
2
,HA, hH,GA, hA,HG ,G+

H
−,H+

G
−

⇒ 8 singly charged channels are expressed by

G
+
Z ,H+

A,G+
h,H+

h,G+
A,H+

Z ,G+
H,H+

h

⇒ 3-doubly charged channels are expressed by

G+G+

√
2

,
H+H+

√
2

,G+
H

+

Each of neutral, singly-charged and doubly-charged states respectively
give the 14× 14, 8× 8 and 3× 3 S-wave amplitude matrix, they can be
simpli�ed to block diagonalized 2× 2 sub-matrices according to their
quantum numbers hyper-charge Y , isospin number I and its third
component I3 and Z2 charge of 2-to-2-body scattering states.
hep-ph/0312374.



Analytic formulae of all the independent eigenvalues values

16πa±
1

= 3

2

ξs
υSM
− 1

2
[3(λ1 + λ2)± 1

2

√
9(λ1 − λ2)2 + ( ξs

υSM
+ 4λ3 − 2λ4)2],

16πa±
2

= −1

2

ξs

υSM
− 1

2
[(λ1 + λ2)± 1

2

√
(λ1 − λ2)2 + (

ξs

υSM
− 2λ4)2],

16πa±
3

= ±1

2

ξs

υSM
− 1

2
[(λ1 + λ2)± 1

2

√
(λ1 − λ2)2 + (

ξs

υSM
− 2λ5)2],

16πa±
4

=
ξs

υSM
− (λ3 + 2λ4 ± 3λ5), 16πa±

5
= ± ξs

υSM
− (λ3 ∓ λ5),

16πa±
6

= ± ξs

υSM
− (λ3 ∓ λ5).

⇒The eigenvalues listed above give the constraints |a±
i
| ≤ 8π



Constraint on the parameter space of the C2HDM

Figure : Constraint on the parameter space of the C2HDM from the
unitarity and the vacuum stability in the case of tanβ = 1 and
m

H± = m
A
for several �xed values of f . The left and right panels show

the case with cos θ = 1 and 0.99, respectively. The lower left region from
each curve is allowed. We take the value of m

H
to be equal to m

A
for the

solid curves, while we scan it within the region of m
A
± 500 GeV for the

dashed curves. For all the plots, M is scanned.



Constraint on mA−tanβ plane

Figure : Constraint on the parameter space on the (tanβ-m
A
) plane from

the unitarity and the vacuum stability in the case of cos θ = 0.99,√
s = 3000 GeV and m

H± = m
A
for f = 1000 GeV (blue) and f = 3000

GeV (red). The lower left region from each curve is allowed. The left
panel shows the case with M to be scanned, while the right one does the
case with M = 0. We take the value of m

H
to be equal to m

A
for the

solid curves, while we scan it within the region of m
A
± 500 GeV for the

dashed curves.



Unitarity and vacuum stability in the inert case

⇒ The case of second doublet without vacuum expectation value (VEV)

Figure : Constraint on the parameter space on the m
A
-m

H
plane by

unitarity and vacuum stability in the inert case of m
H± = m

A
= m2 and√

s = 3000 GeV. We take λ2 = 0.1, 2 and 4 in the left, center and right
panels, respectively.

We have considered h as the lightest Higgs, but a choice of parameters
leading to a di�erent mass spectrum is possible. For example, we have
checked mH = m2 = 100GeV the upper limit from unitarity on
mA(= mH±) is about 700 GeV. So, a dark matter motivated scenario is
available in this work.



Conclusion

We have explicitly shown that the amplitude grows with
√
s in

scattering processes, so that unitarity is broken at a certain

energy scale depending on the scale f .

We have discovered signi�cant di�erences of the allowed
parameter space in E2HDM and C2HDM that can be
exploited in order to separate phenomenologically the two
Higgs scenarios.

For cos θ = 1, h = 125 GeV and mH = mH± = mA case, we got
upper limit on

√
s under the scan of M2 e.g,

√
s ≤ 2, 4 and 13

TeV for the case of f = 500, 1000 and 3000 GeV respectively.
For cos θ = 0.99, we got the upper limit not only on

√
s but

also on mφ which can be O(1)TeV .

A through investigation of the Higgs mass patterns that may

arise at the LHC could allow us to �nd hints of a C2HDM

hypothesis and distinguish it from E2HDM one.



Thank You!



Backup Slides

Potential structure

V (Φ1,Φ2) = m2
1Φ†1Φ1 + m2

2Φ†2Φ2 −m2
3(Φ†1Φ2 + h.c.) +

1

2
λ1(Φ†1Φ1)2+

1

2
λ2(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2)

+ λ4|Φ†1Φ2|2 +
1

2
λ5[(Φ†1Φ2)2 + h.c.].



Generic Formulae for the 2-to-2-body (Pseudo) Scalar
Boson Scatterings

Mc(AB → CD) = −(gAB,CD pAB + gCD,AB pCD)

+ gAC ,BD pAC + gBD,AC pBD + gAD,BC pAD + gBC ,AD pBC + λABCD ,

Ms(AB → X → CD) = − 1

s −m2
X

(
gXA,B pXA + gBX ,A pBX − gAB,X pAB + λABX

)
×
(
gXC ,D pXC + gDX ,C pDX − gCD,X pCD + λCDX

)
,

Mt(AB → X → CD) = − 1

t −m2
X

(
gAC ,X pAC + gXA,C pXA − gCX ,A pCX + λACX

)
×
(
gBD,X pBD − gXB,D pXB + gDX ,B pDX + λBDX

)
,

Mu(AB → X → CD) = − 1

u −m2
X

(
gAD,X pAD + gXA,D pXA − gDX ,A pDX + λADX

)
×
(
gBC ,X pBC − gXB,C pXB + gCX ,B pCX + λBCX

)
,

gab,cd ≡
∂4Lkin

∂(∂µa)∂(∂µb)∂(c)∂(d)
, gab,c ≡

∂3Lkin
∂(∂µa)∂(∂µb)∂(c)

,

λabcd ≡ −
∂4V

∂a∂b∂c∂d
λabc ≡ −

∂3V

∂a∂b∂c



⇒Approximate formulae for S-wave amplitude in G+G− → G+G−

a0(G+G− → G+G−) =
s

32πv2SM
ξ − 1

8πv2SM
(m2

hc
2
θ + m2

Hs
2
θ )(1− ξ) +O(g2, s−1).

⇒ Exact formulae for S-wave amplitude in G+G− → G+G−

Mc(G+G− → G+G−) =
s

2
(1− cφ)(g

G±G±,G∓G∓ − gG+G−,G+G−) + λG+G−G+G−

=
s

2υ2SM
(1− cφ)ξ − 2

υ2SM
(m2

hc
2
θ + m2

Hs
2
θ )

(
1 +

ξ

3

)
,

Ms(G
+G− → G+G−) = −

∑
φ=h,H

1

s −m2
φ

[ s
2

(2g
G±φ,G∓ − g

G+G−,φ) + λG+G−φ

]2
=

4

3υ2SM

(
m2
hc

2
θ + m2

Hs
2
θ

)
ξ +O(s−1),

Mt(G
+G− → G+G−) = −

∑
φ=h,H

1

t −m2
φ

[ t
2

(2g
G±φ,G∓ − g

G+G−,φ) + λG+G−φ

]2
=

4

3υ2SM

(
m2
hc

2
θ + m2

Hs
2
θ

)
ξ +O(s−1).



λG+G−G+G− = − 2

υ2SM

(
1 +

ξ

3

)
(m2

hc
2
θ + m2

Hs
2
θ ),

λG+G−h = −
m2
h

υSM

(
1 +

ξ

6

)
cθ, λG+G−H =

m2
H

υSM

(
1 +

ξ

6

)
sθ,

g
G+G−,G+G− = − ξ

3v2SM
, g

G±G±,G∓G∓ =
2ξ

3v2SM
,

gG+G−,h = − 2ξ

3υSM
cθ, gG±h,G∓ =

ξ

3υSM
cθ,

gG+G−,H =
2ξ

3υSM
sθ, gG±H,G∓ = − ξ

3υSM
sθ.
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