

Dominic Smith Vrije Universiteit Brussel, Belgium, University of Bristol, UK

On behalf of the CMS collaboration

22nd March 2016 Joint annual HEPP and APP conference University of Sussex

Outline

- Introduction
 - Motivation for supersymmetry
- Analysis
 - Search for new physics in the all-hadronic channel
- Jet substructure techniques
- Application to the analysis
 - Search for gluino mediated top squarks using jet substructure techniques

A continuous symmetry that relates fermions and bosons.

- Supersymmetry (SUSY) is an extension to the SM
- Aims to address current short-comings:
 - The Higgs hierarchy problem
 - At high enough energies, no unification of the couplings of the three forces
 - Lack of a dark matter candidate

- Direct searches for SUSY have two classical signatures
 - Multileptons and missing energy
 - Jets and missing energy
- R-parity conserving supersymmetry requires sparticles be pair produced
- Two SUSY decay chains per event

Analysis Introduction

Search for new physics with the α_T variable

Fully hadronic analysis

• Final state rich in jets and missing

transverse momentum

- QCD multijet background strongly suppressed with α_T and $\Delta \phi^*$
- Data-driven estimations of backgrounds
- Events categorised according to
 - Hadronic observables: N_{jet} , N_b , H_T , MH_T
- Topology dosmith@cern.ch

Selections

Description of the key variables

jet

Selections

Description of the key variables

 $\Delta \phi^*$

 $\Delta \phi^* = \min_{i \in \text{jets}} \Delta \phi(\vec{p}_{\text{T}i}, \vec{H}_{\text{T}}^{\text{miss}} + \vec{p}_{\text{T}i})$

- Aim to find events where MHT in same direction as mis-measured jet
- Mis-measured jets and jets with significant missing energy components peak at low values

H_Tmiss

Analysis strategy

Signal and Control regions

- Baseline selection
 - $N_{jet} \ge 1 \text{ (p_T > 40 GeV)}, H_T > 200 GeV, MH_T > 130 GeV$
 - Employ a forward jet veto and MHT/MET < 1.25 cut
- Signal region
 - Lepton and photon veto
 - H_T dependent α_T cuts from 0.65 to 0.52 for $H_T < 800$ GeV
 - $\Delta \phi^* > 0.5$ requirement
- Control regions
 - Backgrounds from data-driven estimates from control regions
- Events categorised according to
 - Hadronic observables: N_{jet}, N_b, H_T, MH_T
 - Topology

dosmith@cern.ch

Results

Interpreted in the context of simplified model spectra (SMS) T1bbbb T1qqqq

 $\tilde{\chi}_1^0$

 $ilde{\chi}_1^0$

. upper limit on cross section [pb]

10⁻¹

10⁻²

10⁻³

1600

1800

 $m_{\tilde{a}}$ [GeV]

95% C.L

Results

Further SMS considerations

- A simplified model is defined by new particles and their production and decay
 - Sparticles are produced in pairs
 - Each sparticle undergoes a decay chain
 - Decay chain ends with lightest supersymmetric particle
- Several SMS models with top/ b quarks in final states
- If mass splitting between parent and daughter t' sparticle large enough $\tilde{g}_{t} = \tilde{t}_{1}^{*}$
 - Tops acquire boost
 - Decay products merge

 $\tilde{\chi}_1^0$

 $\tilde{\chi}_1^0$

 \tilde{t}_1^*

22nd March 2016

рт

Jet Substructure Techniques

- For high p_T objects, object X is boosted
 - Decay products collimated
 - ΔR ~ 2M/p_T

- Example, W/Z boson originating from resonance
 - decay
 - For p_T (W/Z) > 200 GeV, decay products merged into single jet
 - Higher W/Z tagging efficiency with large jet, than resolved jets at high p_{T.}

10

Jet Substructure Techniques Procedure

- Key aim is to partially reverse jet clustering process
 - 'Groom' to improve signal mass resolution
 - Identify smaller structures within jet

E = H

symmetric splitting

 $p_T^b \sim p_T^{\overline{b}}$

Jet Substructure Techniques

- Start with fat-jets
- Construct variables per fat-jet
 - Invariant mass of the fat-jet
 - Minimum invariant mass of every combination of di-subjets per jet
 - Should resemble the W mass
 - Likelihood of fat-jet consisting on N subjets

CMSTopTagger (CTT):

- Jet mass in top mass range
- 3 or more subjets per fat-jets
- W mass: approximated by minimum di-subjet mass
- High degree of likelihood jet contains 3 subjets
- subjet to originate from b quark

Application to the analysis

Control regions & Additional binning

- High background rejection with $\mathbf{CTT} \ge 1$
- Can exploit **CTT** to append binning categorisation N_{top}, N_b, H_T
 - For $H_{T},\,N_{b}\,and\,\,N_{jet}\,events$

- Potential to include W tagging in parallel or simultaneously
 - Identical grooming techniques as before
- Can redefine control regions to enrich with more tagging 'friendly' backgrounds
 - Add $N_b \geq 1$ in SingleMu to enrich with ttbar
 - Invert tagging requirements to predict background contamination

Ntop

ΗT

Nh

Conclusions

- We have searched for SUSY in the all hadronic channel using the α_T variable
 - No sign of any excess in data
 - Several other SMS models to explore
- Jet substructure techniques could greatly improve sensitivity
 - Provide coverage for boosted topologies
 - Explore regions of phase space previously unreachable
- At CMS, boosted object tagging is already proving itself
 - Run II proving to be very fertile ground
- Hope to incorporate t-tagging in the next generation of α_{T} analyses

Backup

A continuous symmetry that relates fermions and bosons.

- Minimal Supersymmetric Standard Model (MSSM) includes:
 - Unification of gauge couplings
 - Dark matter
 - Stability of the vacuum
 - Radiative Elecrtoweak Symmetry Breaking

Hierarchy problem through a Renormalisable Toy Model

Complex Scalar field: φ

Weyl fermion: ψ

$$\mathcal{L} = \partial^{\mu} \phi^* \partial_{\mu} \phi + i \psi^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \psi$$

$$- \frac{1}{2} M_F \psi \psi - \frac{1}{2} M_F \psi^{\dagger} \psi^{\dagger} - \lambda_F \phi \psi \psi - \lambda_F^* \phi^* \psi^{\dagger} \psi^{\dagger}$$

$$- M_B^2 \phi^* \phi - \lambda_B (\phi^* \phi)^2 \qquad (1)$$

A continuous symmetry that relates fermions and bosons.

$$\mathcal{L} = \partial^{\mu} \phi^{*} \partial_{\mu} \phi + i \psi^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \psi$$

$$- \frac{1}{2} M_{F} \psi \psi - \frac{1}{2} M_{F} \psi^{\dagger} \psi^{\dagger} - \lambda_{F} \phi \psi \psi - \lambda_{F}^{*} \phi^{*} \psi^{\dagger} \psi^{\dagger}$$

$$- M_{B}^{2} \phi^{*} \phi - \lambda_{B} (\phi^{*} \phi)^{2}$$
(1)

Chiral global U(1) symmetry when $M_F = 0$

$$\phi
ightarrow e^{-2ilpha} \phi \;, \qquad \psi
ightarrow e^{ilpha} \psi$$

1-loop Fermion mass corrections They must contain at least M_F insertion e.g.

 M_F is protected by U(1) symmetry

$$\delta M_F \simeq \frac{\lambda_F^2}{16\pi^2} M_F$$

A continuous symmetry that relates fermions and bosons.

1-loop Boson mass corrections

The boson mass is not protected by the chiral symmetry

Light boson masses are not natural: they are not stable under

radiative corrections

 $\ensuremath{\mathsf{M}}_{\ensuremath{\mathsf{B}}}$ receives large, quadratically divergent, radiative corrections, and so does the Higgs boson in the SM

CMS Compact Muon Solenoid

CMS

Particle interactions at CMS

CMS

Jet reconstruction at CMS

Calorimeter Jets

Jets clustered from ECal and HCal deposits

Jet-Plus-Track Jets (JPT)

Subtract average calorimeter response from CaloJet and replace it with the track measurement

Particle Flow

Construct particle flow (PF) objects linking the information from various sub-detectors and interpret them as a unique list of calibrated particles

Event variables at CMS

• **H**_T

• A measure of how energetic the event was

$$H_{\rm T} = \sum_{i \in \rm jets} \left| \vec{p}_{\rm Ti} \right|$$

\cdot MET

• Missing energy- ideally due to invisible particles

$$\vec{E}_{\mathrm{T}}^{\mathrm{miss}} = \vec{E}_{\mathrm{T}} = -\sum_{i \in \mathrm{particles}} \vec{p}_{\mathrm{T}i}$$

· MHT

• Alternative to MET- constructed with jets only

$$\vec{H}_{\mathrm{T}}^{\mathrm{miss}} = \vec{H}_{\mathrm{T}} = -\sum_{i \in \mathrm{jets}} \vec{p}_{\mathrm{T}i}$$

Analysis strategy

Control regions

- <u>Baseline selection</u>
 - $N_{jet} \ge 1 \text{ (p_T > 40 GeV)}, H_T > 200 GeV, MH_T > 130 GeV$
 - Employ a forward jet veto and MHT/MET < 1.25 cut
- Signal region
 - Lepton and photon veto
 - H_T dependent α_T cuts from 0.65 to 0.52 for $H_T < 800$ GeV
 - $\Delta \phi^* > 0.5$ requirement
- Single (double) muon and photon control region
 - 1(2) muon(s) with $p_T > 30$ GeV, |eta| < 2.1 or one photon with $p_T > 200$ GeV
 - Relative isolation requirement
 - For leptons, $M_T(M_{II})$ to be compatible with W (Z) mass
 - Lepton/ photon ignored for variables

Background Estimation

QCD multijet and non-multijet backgrounds

- QCD multijet production strongly suppressed with $\alpha_{T,} \Delta \phi^*$, MHT/MET cuts
 - Remainder estimated with QCD-enriched sideband in data
 - Invert MHT/MET (> 1.25) cut
 - Obtain data counts with non QCD contribution removed
 - Take pass-fail ratio $R_{\ensuremath{\textit{QCD}}}$ of QCD MC on MHT/MET cut
 - Product of above yields estimate for QCD contamination

 $\Delta \phi$

Background Estimation

QCD multijet and non-multijet backgrounds

- For non-multijet backgrounds, transfer factors used to predict backgrounds
 - Extrapolation of observed counts in control regions to predicted counts in signal

$$N_{\text{pred}}^{\text{signal}}(n_{\text{jet}}, n_{\text{b}}, H_{\text{T}}) = \frac{N_{\text{MC}}^{\text{signal}}(n_{\text{jet}}, n_{\text{b}}, H_{\text{T}})}{N_{\text{MC}}^{\text{control}}(n_{\text{jet}}, n_{\text{b}}, H_{\text{T}})} \times N_{\text{obs}}^{\text{control}}(n_{\text{jet}}, n_{\text{b}}, H_{\text{T}})$$

 Potential biases in TFs are assessed in data with closure tests between several control (sub-)samples

Tagging at CMS

- N-subjettiness
 - Describes a jet shape
 - Effective measure for identifying how the jet energy is divided into subjets
 - Try to obtain 'lobes' of energy in a jet by clustering k constituent jet particles around N candidate subjet axes

$$\tau_N = \frac{1}{d_0} \sum_k p_{T,k} \min \left\{ \Delta R_{1,k}, \Delta R_{2,k}, \cdots, \Delta R_{N,k} \right\}.$$

• where
$$d_0 = \sum_k p_{T,k} R_0$$

- Minimum pair wise mass
 - Minimum invariant mass of every combination of di-subjets per jet
 - Should resemble the W boson

V-tagging

- AK8 jets (recluster CA8)
 - Reverse clustering sequence based of 'groomer'
- For Run II use soft drop mass variable (instead of pruned mass):
 - Jet mass in range [70, 100] GeV
 - 2 or more subjets per AK8 jet
 - N-subjetiness τ₂₁ in range [0.5, 0.75]
 - N-subjetiness $\tau_{21} < 0.5$

Previous results

Incorporation

Pre-Selection

- Objects become boosted at high p_{T}
- Apply a harsher baseline selection
 - $N_{jet}(ak4) \ge 5$, $Nb(ak4) \ge 2$, $H_T(ak4) \ge 800$ GeV, $MH_T(ak4) \ge 130$ GeV
 - Apply a forward jet veto and $MH_T / MET < 1.25$
 - $N_{jet}(ak8) \ge 2$
 - p_T (ak8) ≥ 170 GeV
 - $N_{subjets}$ (per at least 1 ak8 jet) \geq 3

• **CTT**:

- Jet mass in [140, 250] GeV range
- $m_{min} > 50 \text{ GeV}$
- T₃₂ < 0.6
- subjet b-disc > 0.79

t-tagging baseline

Substructure at Trigger Level

