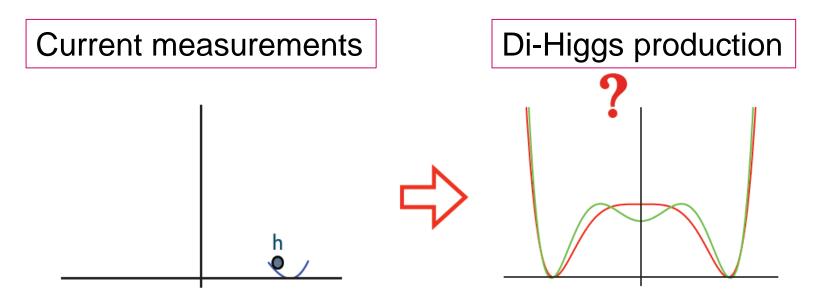
Boosting Higgs Pair Production in the bbb Final State with Multivariate Techniques

Çiğdem İşsever

based on Behr, Bortoletto, Frost, Issever, Hartland, Rojo, arxiv:1512.08928

IOP Institute of Physics


Joint annual HEPP and APP conference

21-23 March 2016, University of Sussex, Brighton, UK

Probing electroweak symmetry breaking

- Higgs mechanism
 - Postulated shape of potential completely ad-hoc, no first principles
 - It works, but highly unsatisfactory
 - Other EWSB mechanisms conceivable

Arkani-Hamed, Han, Mangano, Wang, arxiv:1511.06495

Alternative EWSB Mechanisms

Higgs mechanism:

$$V(h) = m_h^2 h^{\dagger} h + \frac{1}{2} \lambda (h^{\dagger} h)^2 \text{ with } m_h^2 < 0 \text{ and } \lambda > 0$$

Alternative: negative quadric \leftrightarrow positive sextic $V(h) \rightarrow m_h^2 h^{\dagger} h + \frac{1}{2} \lambda (h^{\dagger} h)^2 + \frac{1}{3! \Lambda^2} (h^{\dagger} h)^3$ with $\lambda < 0$

Alternative: Coleman-Weinberg

$$V(h) \rightarrow \frac{1}{2} \lambda (h^{\dagger}h)^2 \log \left[\frac{(h^{\dagger}h)}{m^2}\right]$$

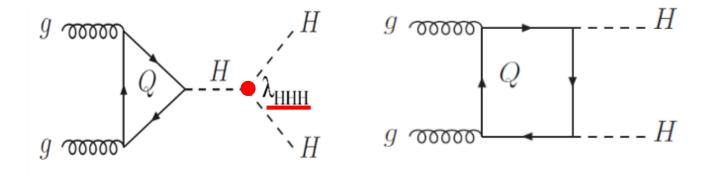
Each leads to different EWSB mechanism,

- with crucial implications for the hierarchy problem,
- the structure of quantum field theory,
- and New Physics at the EW scale

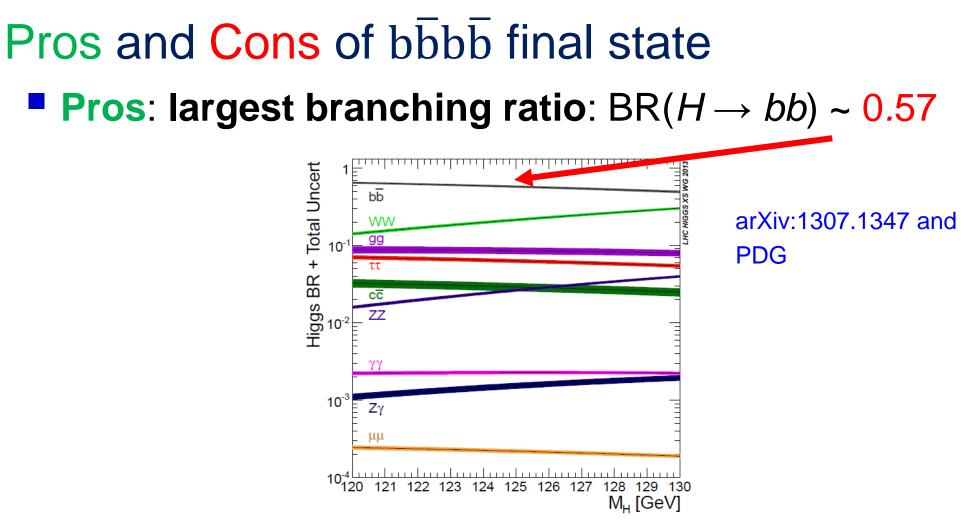
Alternative EWSB Mechanisms

- Higgs mechanism: $\lambda_{\rm HHH}^{\rm SM} = 3(m_{\rm H}^2/v)$ Leading differences show up in the cubic Higgs self-coupling
- Alternative: negative quadric ↔ positive sextic

$$\lambda_{\text{HHH}} = 7(m_{\text{H}}^2/v) = (7/3)\lambda_{\text{HHH}}^{\text{SM}}$$

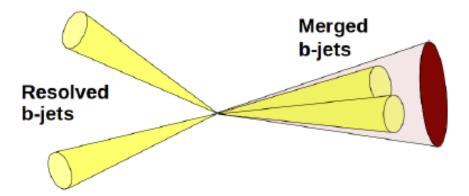

Alternative: Coleman-Weinberg

 $\lambda_{\rm HHH} = (5/3) \lambda_{\rm HHH}^{\rm SM}$


Importance of Higgs Pair Production

• Uniquely sensitive to Higgs self-coupling, λ_{HHH}

In SM, hh rates are small: in the leading gluon-fusion production mode, NNLO+NNLL cross-section at 14 TeV is ~40 fb. These are further suppressed by the branching fractions!

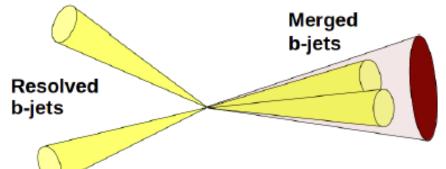


Cons: Huge QCD multi-jets background

Previous studies: $S/\sqrt{B} \sim 2$ @ HL-LHC (no PU, missing relevant backgrounds)

Analysis Strategy

- Multivariate + loose cut based analysis techniques
- Use all di-Higgs decay topologies



- Model pile-up (PU) effects: 80 (baseline) and 150
- Include all relevant backgrounds, esp. 2b2j

Process	Generator	$N_{ m evt}$	$\sigma_{ m LO}$ (pb)	K-factor
pp ightarrow hh ightarrow 4b	MadGraph5_aMC@NLO	1M	$6.2 \cdot 10^{-3}$	2.4 (NNLO+NNLL)
$pp ightarrow bar{b}bar{b}$	SHERPA	3M	$1.1\cdot 10^3$	1.6 (NLO)
$pp ightarrow bar{b} jj$	SHERPA	3M	$2.7\cdot 10^5$	1.3 (NLO)
pp ightarrow jjjjj	SHERPA	3M	$9.7\cdot 10^6$	0.6 (NLO)
$pp ightarrow t ar{t} ightarrow b ar{b} j j j j$	SHERPA	3M	$2.5\cdot10^3$	1.4 (NNLO+NNLL)

Higgs identification (tagging)

- Separation of b-jets shrinks: $\Delta R(b, \overline{b}) \sim 2m^{H}/p_{T}^{H}$
 - \rightarrow Single large-R jet for $p_T^H > 250 \; \text{GeV}$

Resolved Higgs

- 2 AKT4 jets
- p_T > 40 GeV and |η| < 2.5

b-tagging efficiencies

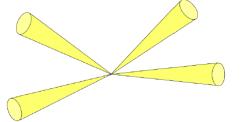
- b-jet: f_b=0.8
- c-jet:

Û

light-jet:

f_c=0.0 f_c=0.1 f_l=0.01

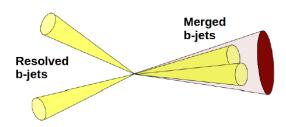
Merged Higgs


- 1 AKT10 jet
- $p_T > 200 \text{ GeV}, |\eta| < 2.5$
- Higgs tagging: BDRS mass-drop tagger [arxiv:0802:2470]

Large-R jet b-tagged if two associated b-tagged small-R jets

Cigdem Issever

Higgs Topologies


Resolved

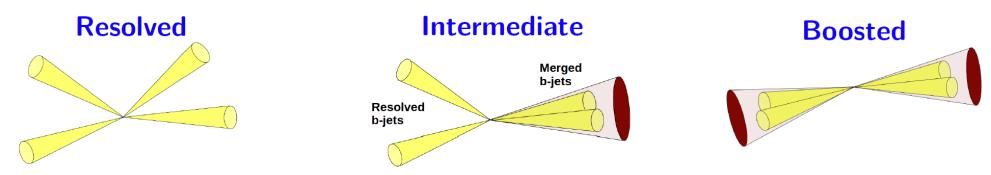
≥ 4 b-tagged small-R jets

- Di-Higgs reconstructed from 4 leading jets
- Minimize mass difference between dijet systems

Intermediate

Boosted

 \geq 2 b- and

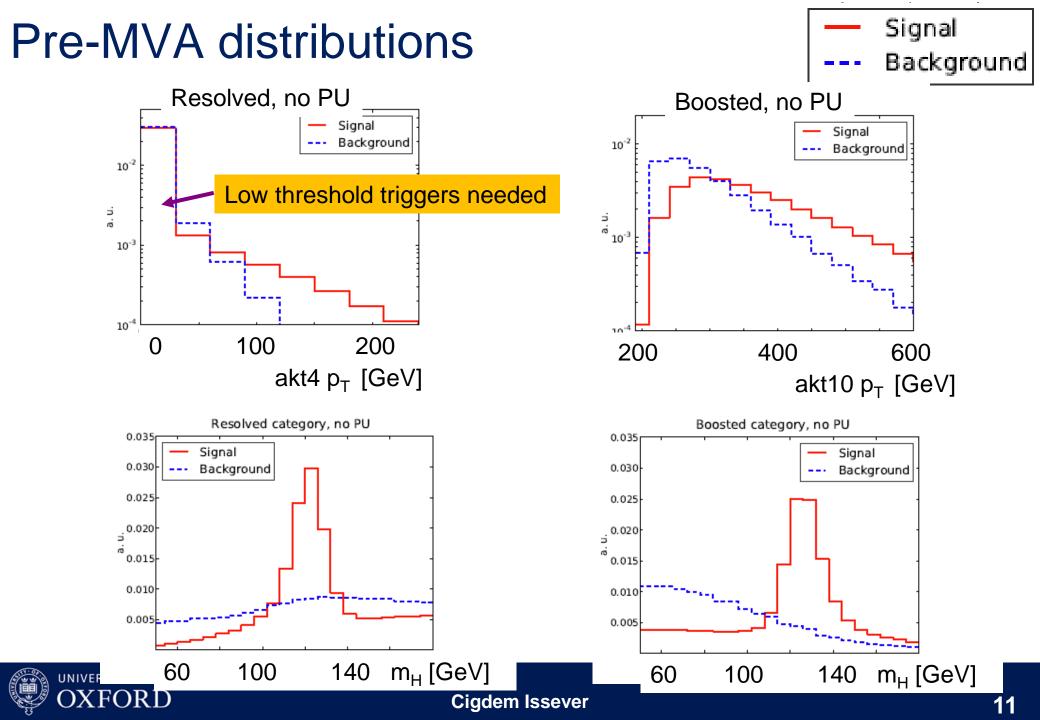

Higgs tagged

large-R jets

- =1 large-R jet (band Higgs tagged)
- ≥ 2 b-tagged AKT4 jets
- ΔR>1.2 w.r.t large-R jet
- Higgs reconstructed from
 2 leading small-R jets
- Leading 2 jets taken as Higgs candidates
- Minimize mass difference between dijet system and large-R jet

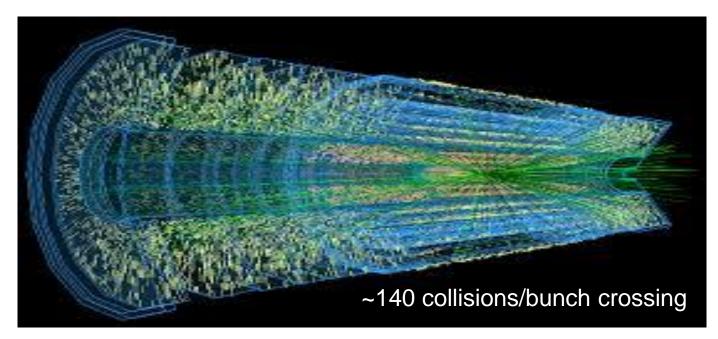
Cigdem Issever

Higgs Topologies

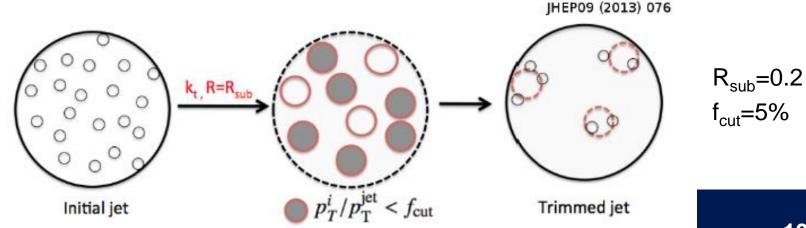


Rank categories by S/ \sqrt{B} to make them exclusive:

Resolved < Intermediate < Boosted

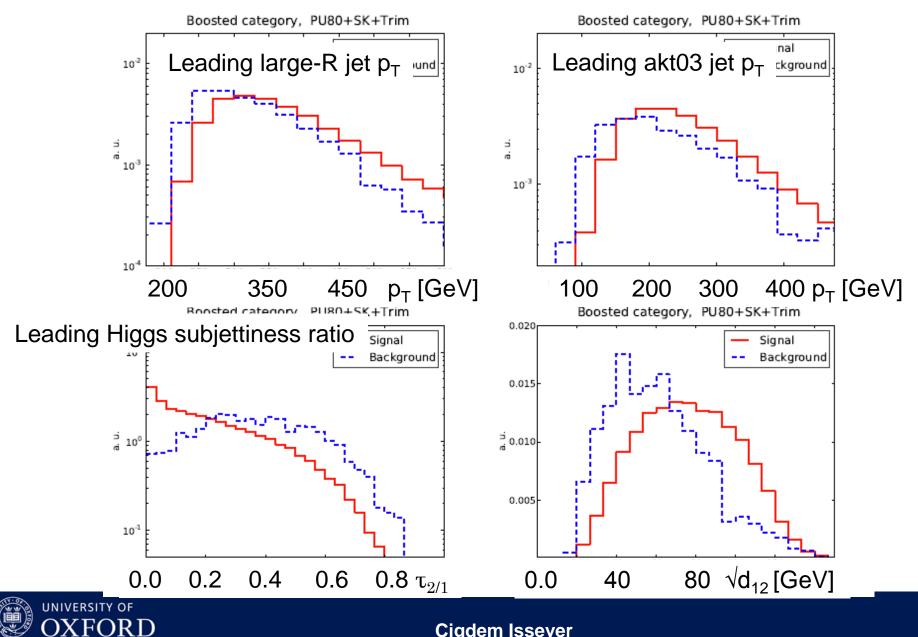

Loose mass cut: $|m_H - 125 \text{ GeV}| < 40 \text{ GeV}$

Pile-Up modelling


- Up to 150 interactions per bunch-crossing @ HL-LHC
- Impact on signal significance:
 - Additional (hard) jets in reconstruction
 - Affects mass and substructure of large-R jets
- Not taken into account in previous studies

Pile-Up modelling and mitigation

- Superimpose n(PU) = 80 Minimum Bias events on each signal/background event
 - Similar results for PU = 150
- Pile-up mitigation
 - Event level: Remove soft particles using SoftKiller [arXiv:1407.0408]
 - Jet level: Apply trimming [arXiv:0912.1342] (large-R jets only)


Impact of Pile-up on Higgs mass reconstruction

		$\langle m_h^{ m reco} angle - m_h$	σ_{m_h}	No PU:
DU	leading h	-3.8 GeV	$(8.5 \pm 0.2) \text{ GeV}$	NUPU.
no PU	subleading h	$-5.8 \mathrm{GeV}$	$(9.1\pm0.3)~{\rm GeV}$	~ 9 GeV
PU80	leading h	+33 GeV	$(8.8 \pm 1.5) \text{ GeV}$	
P 000	subleading h	+31 GeV	(11.7 ± 3.3) GeV	
DUSO + CV	leading h	$+3.9 \mathrm{GeV}$	$(10.7\pm0.3)~{ m GeV}$	80 PU:
PU80+SK	subleading h	$+2.1 { m GeV}$	$(10.5\pm0.3)~{\rm GeV}$	~ 11 GeV

		$\langle m_h^{ m reco} angle - m_h$	σ_{m_h}	No PU:
DU	leading h	+2.0 GeV	$(8.2 \pm 0.5) \text{ GeV}$	
no PU	subleading h	$+1.0 \mathrm{GeV}$	$(8.8\pm0.5)~{\rm GeV}$	~ 9 GeV
DU90 + CIZ + Theire	leading h	-2.2 GeV	(8.7 ± 0.7) GeV	
PU80+SK+Trim	subleading h	$-4.9 { m GeV}$	$(9.0 \pm 0.8) \text{ GeV}$	80 PU:
L		1		-0 CoV

Boosted with 80 PU + Softkiller + Trimming

Cigdem Issever

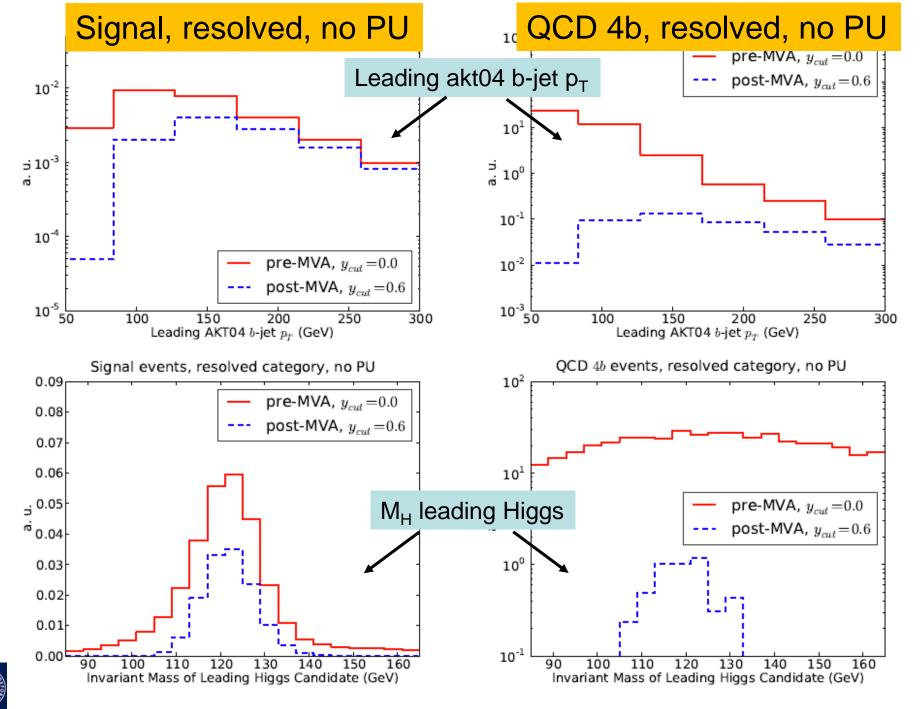
Pre-MVA 2b2j background -- BIG

	HL-LHC, Resolved category, $PU+SK$ with $n_{PU} = 80$											
			Cross-se	ection [fb]	$S_{/}$	S/\sqrt{B}						
	hh4b	total bkg	4b	2b2j	4j	$tar{t}$	tot	4b	tot	4b		
C1a	11	$4.4 \cdot 10^{8}$	$1.5 \cdot 10^{5}$	$3.0\cdot 10^7$	$4.1 \cdot 10^{8}$	$2.6 \cdot 10^5$	$2.4 \cdot 10^{-8}$	$7.2 \cdot 10^{-5}$	0.03	1.5		
C1b	11	$4.4\cdot 10^8$	$1.5 \cdot 10^5$	$3.0\cdot 10^7$	$4.1 \cdot 10^8$	$2.6\cdot 10^5$	$2.4\cdot 10^{-8}$	$7.2 \cdot 10^{-5}$	0.03	1.5		
C1c	3	$1.1 \cdot 10^8$	$4.2 \cdot 10^{4}$	$7.7 \cdot 10^{6}$	$9.9 \cdot 10^7$	$1.1\cdot 10^5$	$2.8\cdot10^{-8}$	$7.4 \cdot 10^{-5}$	0.02	0.8		
C2	0.6	$9.0\cdot 10^3$	$3.5\cdot 10^3$	$5.1\cdot 10^3$	$3.1\cdot 10^2$	50	$6.5\cdot 10^{-5}$	$1.7\cdot 10^{-4}$	0.4	0.5		
	4b			2b2j			4j					
3.	$.5 \cdot$	10^{3}	5	$0.1 \cdot$	10^{3}	3	$8.1 \cdot 1$	10^2				

b-quark radiation in parton shower

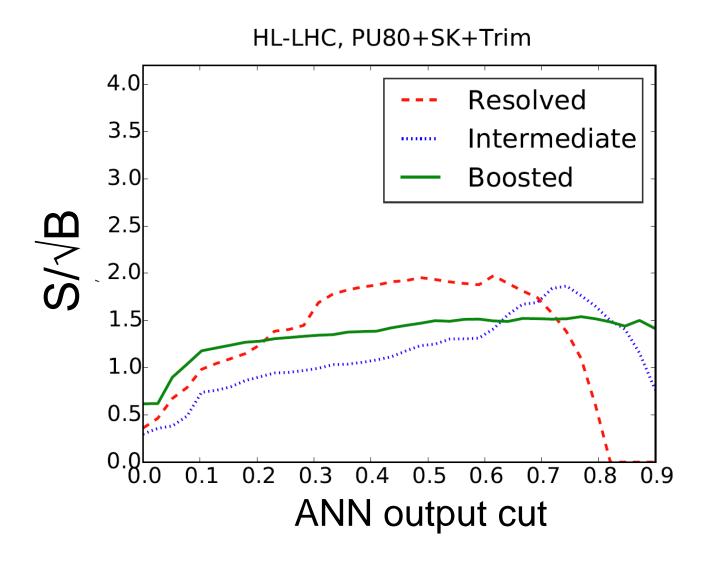
- \rightarrow non-negligible fraction of 2*b*2*j* events with \geq 2 *b*-jets
- Additional light jets from parton shower
- \rightarrow Not all of the 4 leading jets in 4b events are b-jets

Good control of light and charm jet fake rates impotant!


Multivariate Analysis Techniques

Multi-layer feed-forward artifical neural net (ANN) - perceptron

Input variables


- 13 resolved
- 17 intermediate
- 21 boosted

ANN for boosted category, heat map after training: red (dark) high (low) weight 5 3 Х Х Boosted Category, no PU 12 Signal Background 10 Background Signal **Trained on signal & background** a. u. Separately for the 3 categories 0.2 0.8 ŏο 1.0 0.6 0.4 ANN Output Cigdem Is

S/VB post-MVA results

Post-MVA results for HL-LHC (3 ab⁻¹)

 $\simeq 4.7 \ (1.5)$

OXFORD

Category		signal	background		$S/\sqrt{B_{\rm tot}}$	$S/\sqrt{B_{4b}}$	$S/B_{\rm tot}$	S/B_{4b}
		$N_{\mathbf{ev}}$	$N_{ m ev}^{ m tot}$	$N_{ m ev}^{ m 4b}$				
Boosted	no PU	290	$1.2\cdot 10^4$	$8.0\cdot 10^3$	2.7	3.2	0.03	0.04
Doosted	PU80+SK+Trim	290	$3.7\cdot 10^4$	$1.2\cdot 10^4$	1.5	2.7	0.01	0.02
Intermediate	no PU	130	$3.1 \cdot 10^3$	$1.5 \cdot 10^3$	2.3	3.3	0.04	0.08
Intermediate	PU80+SK+Trim	140	$5.6\cdot 10^3$	$2.4\cdot 10^3$	1.9	2.9	0.03	0.06
Resolved	no PU	630	$1.1 \cdot 10^{5}$	$5.8\cdot 10^4$	1.9	2.7	0.01	0.01
Resolved	PU80+SK	640	$1.0\cdot 10^5$	$7.0 \cdot 10^4$	2.0	2.6	0.01	0.01
Combined	no PU				4.0	5.3		
Combined	PU80+SK+Trim				3.1	4.7		

$$\simeq 3.1 \ (1.0) \,, \quad \mathcal{L} = 3000 \ (300) \, \mathrm{fb}^{-1}$$

Combination of ALL categories important
 2) 2b2j background has significant impact

Post-MVA results for HL-LHC (3 ab⁻¹)

Category		signal	nal background		$S/\sqrt{B_{\rm tot}}$	$S/\sqrt{B_{4b}}$	$S/B_{\rm tot}$	S/B_{4b}
		$N_{\mathbf{ev}}$	$N_{ m ev}^{ m tot}$	$N_{ m ev}^{ m 4b}$				
Boosted	no PU	290	$1.2\cdot 10^4$	$8.0\cdot 10^3$	2.7	3.2	0.03	0.04
Doosted	PU80+SK+Trim	290	$3.7\cdot 10^4$	$1.2\cdot 10^4$	1.5	2.7	0.01	0.02
Intermediate	no PU	130	$3.1 \cdot 10^3$	$1.5 \cdot 10^3$	2.3	3.3	0.04	0.08
Intermediate	PU80+SK+Trim	140	$5.6\cdot 10^3$	$2.4 \cdot 10^3$	1.9	2.9	0.03	0.06
Resolved	no PU	630	$1.1 \cdot 10^{5}$	$5.8 \cdot 10^4$	1.9	2.7	0.01	0.01
Resolved	PU80+SK	640	$1.0\cdot 10^5$	$7.0\cdot 10^4$	2.0	2.6	0.01	0.01
Combined	no PU				4.0	5.3		
Combined	PU80+SK+Trim				3.1	4.7		

$$\left(\frac{S}{\sqrt{B}}\right)_{\rm tot} \simeq 3.1 \ (1.0) \,, \quad \mathcal{L} = 3000 \ (300) \,{\rm fb}^{-1}$$

Observation with just 4b channel seems possible!

$$\simeq 4.7 \ (1.5)$$

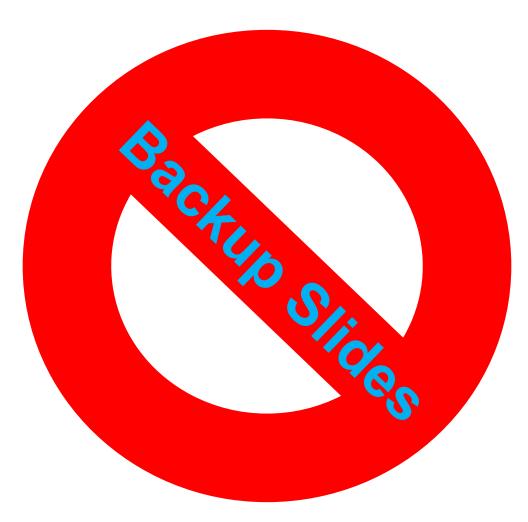
XFORD

Conclusions

- Di-Higgs production corner stone of LHC program
- Presented new feasibility study of $2H \rightarrow bbbb$
 - MVA based and combination of all di-Higgs topologies

1st time:

- pile-up modelled (PU = 80 and PU = 150)
 - Results are stable under PU with mitigation
- 2b2j and 4j backgrounds included
 - Light and charm quark fake rate reduction important
- Low pt trigger thresholds important for resolved regime
- 4b final state alone enough to claim evidence for 2H process at HL-LHC
- If experimental performance improved 2H process observation with just 200 – 300 fb⁻¹ possible.


Outlook

Include $Z \rightarrow bb$, ttH and HZ backgrounds

Add more statistics to QCD backgrounds

Estimation of accuracy of Higgs self-coupling measurement at LHC, HL-LHC, 100 TeV FCC collider

Pre-MVA cut-flow

• C1a: check that we have at least two large-R jets (in the boosted case), one large-R jet and at least 2 small-R jets (in the intermediate case) and at least four small-R jets (in the resolved case).

In addition, require that these jets satisfy the corresponding p_T thresholds; $p_T \ge 200$ GeV for large-R jets and $p_T \ge 40$ GeV for small-R jets, as well as the associated rapidity acceptance constraints.

- C1b: the two leading large-*R* jets must be mass-drop tagged in the boosted category. In the intermediate category, the large-*R* jet must also be mass-drop tagged.
- C1c: after the two Higgs candidates have been reconstructed, their invariant masses are required to lie within a window around m_H , in particular between 85 and 165 GeV, Eq. (3.6).
- C2: the *b*-tagging conditions are imposed (see Sect. 3.2), and the event is categorised exclusively into one of the three topologies, according to the hierarchy determined in Sect. 3.3.

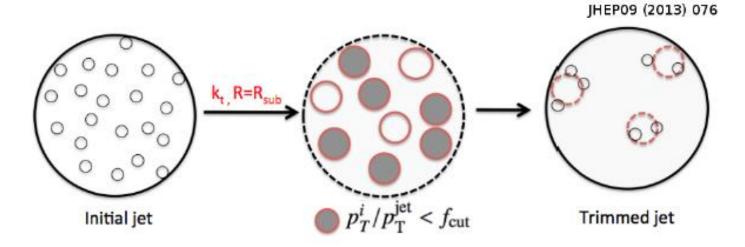
Pre-MVA 2b2j background -- BIG

	HL-LHC, Boosted category, $PU+SK+Trim$ with $n_{PU} = 80$											
			Cross-se	S_{I}	B	S/\sqrt{B}						
	hh4b	total bkg	4b	tot	4b	tot	4b					
C1a	3.5	$4.1\cdot 10^7$	$1.0\cdot 10^4$	$2.7\cdot 10^6$	$3.8\cdot 10^7$	$2.0\cdot 10^4$	$8.6 \cdot 10^{-8}$	$3.4 \cdot 10^{-4}$	0.03	1.9		
C1b	2.5	$3.2\cdot 10^7$	$6.8\cdot 10^3$	$1.9\cdot 10^6$	$3.0\cdot 10^7$	$1.9\cdot 10^4$	$7.8\cdot10^{-8}$	$3.6\cdot10^{-4}$	0.02	1.6		
C1c	0.8	$2.2\cdot 10^6$	$5.4\cdot 10^2$	$1.4 \cdot 10^{5}$	$2.0\cdot 10^6$	$4.8\cdot 10^3$	$3.8\cdot10^{-7}$	$1.6\cdot10^{-3}$	0.03	2.0		
C2	0.14	$1.5\cdot 10^2$	40	86	22	1.8	$9.0\cdot 10^{-4}$	$3.5\cdot10^{-3}$	0.6	1.2		

Background and signal relative fractions

		$n_0^{(\mathrm{b-jet})}$	$n_1^{(\mathrm{b-jet})}$	$n_2^{(\mathrm{b-jet})}$	$n_3^{(\mathrm{b-jet})}$	$n_4^{(\mathrm{b-jet})}$	$\mathrm{EFF}_{\mathrm{b-tag}}$
Signal	$hh \rightarrow 4b$	0.1%	3%	25%	53%	20%	8.5%
	QCD $4b$	1%	8%	27%	44%	20%	8.4%
Background	QCD $2b2j$	9%	42%	49%	1%	0.1%	0.04%
	QCD $4j$	96%	3.5%	0.5%	0.01%	$3\cdot 10^{-4}\%$	$2\cdot 10^{-4}\%$

Table 5. The relative fractions $n_j^{(b-jet)}$ of events for the resolved selection for which out of the four leading small-R jets of the event, j jets contain at least one b-quark with $p_T^b \ge 15$ GeV. This information is provided for the di-Higgs signal events and for the three QCD background samples. The last column indicates the overall selection efficiency as defined in Eq. (4.1)



Pile-up simulation and mitigation

- Up to 150 interactions per bunch-crossing @ HL-LHC
- Impact on signal significance:
 - Additional (hard) jets in reconstruction
 - Affects mass and substructure of large-R jets
- Not taken into account in previous studies

Strategy:

- Superimpose $n_{\rm PU} = 80$ Minimum Bias events on each signal/background event
- Pile-up mitigation
 - Event level: Remove soft particles using SOFTKILLER [arXiv:1407.0408]
 - Jet level: Apply TRIMMING [arXiv:0912.1342] (large-R jets only)

Multivariate techniques

Given a set of N_{var} kinematic variables $\{k_i\}$ associated to MC event *i*, and a set of ANN weight parameters $\{\omega\}$, the ANN output y_i interpreted as **probability that this event originates from signal process**

$$y_i = P(y'_i = 1 | \{k\}_i, \{\omega\}),$$

With y'_i the true MC classification: $y'_i=1$ for signal, $y'_i=0$ for background The general classification probability including background events is

$$P(y'_i|\{k\}_i, \{\omega\}) = y_i^{y'_i}(1-y_i)^{1-y'_i}$$

Thus the error function to be minimised during the training is the cross-entropy:

$$E(\{\omega\}) \equiv -\log\left(\prod_{i}^{N_{\text{ev}}} P(y'_i|\{k\}_i, \{\omega\})\right)$$
$$= \sum_{i}^{N_{\text{ev}}} \left[y'_i \log y_i + (1 - y'_i) \log (1 - y_i)\right]$$

ANN training performed with Genetic Algorithms using cross-validation stopping

Post-MVA ROC curve and number of events

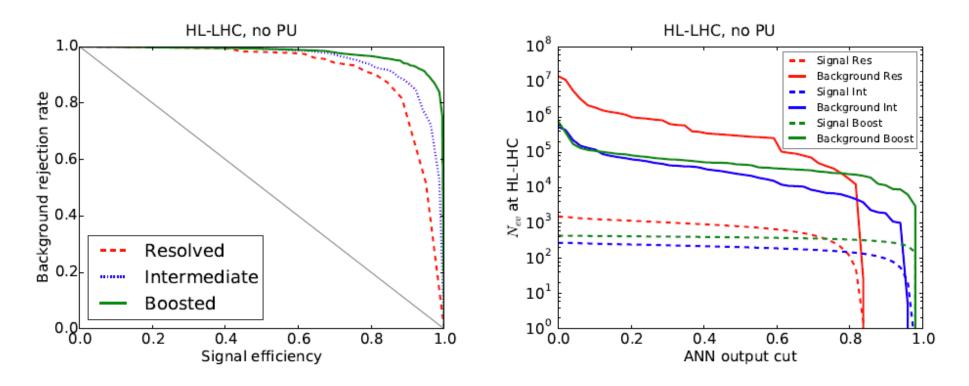
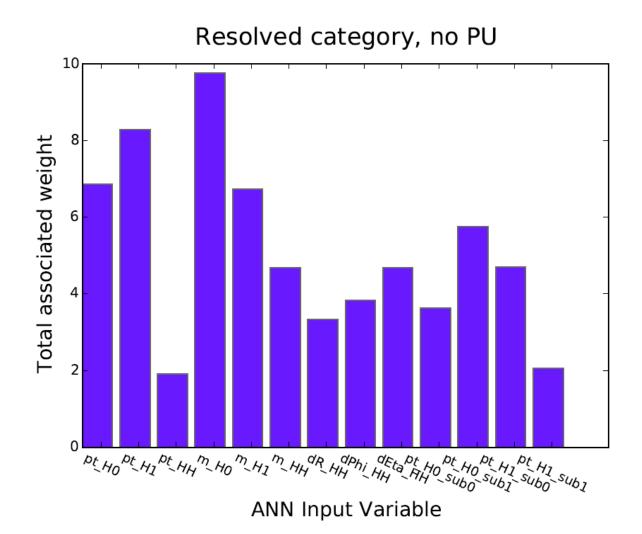
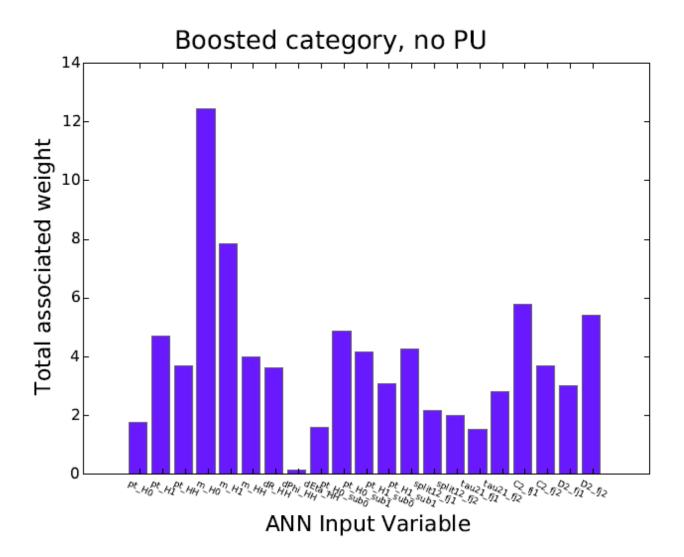
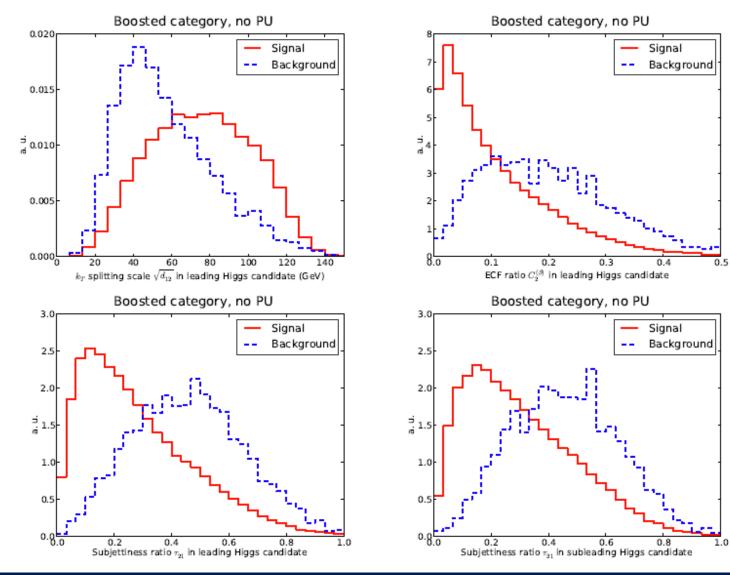



Figure 17. Left: ROC curve for the background rejection rate as a function of the signal selection efficiency, as the cut y_{cut} in the ANN output is varied. Right: Number of signal (dashed) and background (solid) events expected at the HL-LHC as a function of the y_{cut} .



MVA Analysis



MVA

Pre-MVA distributions

