The IDEA Detector

lacopo Vivarelli University of Sussex

On behalf of the IDEA detector concept

Machine/detector environment

- 5x10¹² Z, 10⁸ WW pairs, 10⁶ Higgs bosons and 10⁶ top pairs expected.
- Different **running conditions** depending on beam energy:
 - High-intensity machine at the Z-pole, high-current machine at the top threshold

- Bunch spacing ranging from 20 ns (Z) to 7 µs (top)
 - No power-pulsing.
 - Need fast detectors.
- Large (30 mrad) crossing angle between beams + low beam emittance ⇒ detector magnetic field 2 T max.
- Machine-detector interface structure (large angle + shielding + compensating magnets + luminometer) limit detector acceptance to ±150 mrad (100 mrad for calo)

Physics requirements

Physics Process	Measured Quantity	Critical Detector	Required Performance
$ZH \to \ell^+ \ell^- X$	Higgs mass, cross section	Tracker	$\Delta(1/p_{\rm T}) \sim 2 \times 10^{-5}$
$H \to \mu^+ \mu^-$	$BR(H \to \mu^+ \mu^-)$		$\oplus 1 \times 10^{-3}/(p_{\rm T}\sin\theta)$
$H \to b\bar{b}, \ c\bar{c}, \ gg$	$BR(H \rightarrow b\bar{b}, c\bar{c}, gg)$	Vertex	$\sigma_{r\phi} \sim 5 \oplus 10/(p \sin^{3/2} \theta) \ \mu \mathrm{m}$
$H \to q\bar{q}, \ VV$	$BR(H \to q\bar{q}, VV)$	ECAL, HCAL	$\sigma_E^{ m jet}/E\sim 3-4\%$
$H\to\gamma\gamma$	$BR(H \to \gamma \gamma)$	ECAL	$\sigma_E \sim 16\%/\sqrt{E} \oplus 1\%$ (GeV)

- Higgs sector definition imposes strict requirements on hadronic resolution, tracking and vertexing.
- On top of that:

.

- Excellent PID for flavour physics.
- Tau polarisation measurement capabilities.

Innovative Detector for E⁺e⁻ Accelerators (IDEA)

UNIVERSITY OF SUSSEX

IDEA - overview

• Target hit efficiency - 99.9%

- Low power (< 20 mW/cm²) / high-resolution pixel detector
 - R&D performed within the ARCADIA framework
 - Monolithic sensors (MAPS) to provide 20 µm pixel for ~ 3 µm single point resolution

 σ_{D}

 \bullet Current ALICE ITS pixel size 30 μm for 5 μm single point resolution

 σ_{z0}

Tracking

- •Tracking with drift chamber (similar in concept to MEG II chamber)
 - Minimising multiple scattering, adding only 2% X₀ to material in tracking volume
 - $R_{in} = 35 \text{ cm}, R_{out} = 200 \text{ cm}, L = 400 \text{ cm}, drift time o(300 \text{ ns})$
 - \bullet 90% He 10% iC_4H_{10} max drift time 360 ns, Stereo angle 30°
 - Cluster counting (12.5 cm⁻¹ clusters) improves spacial resolution and dE/dx measurement
 - Single point precision (with cluster counting) better than ~ 100 μm.

IDEA: Material vs. $cos(\theta)$

See here and talk from M. Primavera at this workshop for more details

Cluster counting

- Number of ionisation clusters along track proportional to the energy loss.
- With ~ 1 ns time resolution waveform sensitive to individual clusters.
 - Requires ~ GHz sampling and on-detector feature extraction.
- Excellent K/ π separation for most momenta. TOF could help recover missing ranges.

UNIVERSITY OF SUSSEX

Calorimetry+preshower

- Preshower under optimisation, using µ-RWELL
- Single EM+HAD sampling calorimeter, with **1.5 mm fiber pitch** and Cherenkov/Scintillation dual-readout.
 - For details about dual-readout, see <u>here</u>
- •No mechanical **longitudinal** segmentation, ~ 7 λ_1 length.
- Good **EM intrinsic** energy resolution, excellent **hadronic** resolution

The dual-readout principle in a nutshell

- Sampling the **hadronic shower** with two readouts of **different e**/ **h factor** allows to correct event by event for non-compensation.
- Cherenkov (C) channel mostly sensitive to the em shower component, Scintillation (S) sensitive to all.

Magnet and muon system

- Current design: NbTi/Cu conductor + high strength aluminum for cryostat - 8 ton total

- Muon spectrometer using Micropattern Gaseous Detectors (µ-RWELL)

Taken from arXiv:1903.11017

Detector elements principle:

- Amplification stage
- Resistive layer to quench the multiplication
- Patterned PCB for readout

OF SUSSEX

Performance

Simulation

- Full **G4 standalone simulation** of each of (simplified) Silicon Vertex and preshower, Drift Chamber, Calorimeter detector existing.
- Integration among sub-detectors and with FCC software ongoing.
 - See talk from Sanghyun Ko at this workshop.
 - See also <u>twiki</u>
- Studies in the next slides use either full simulation or a Delphes fast simulation

Tracking

Momentum Resolution

I. Vivarelli - The IDEA detector - 4th FCC Physics and Experiments Workshop - 10-13 November 2020

- Use of fast simulation comes handy for physics studies
 - Fast tracking simulation validated against full simulation and then used to measure, e.g., Z recoil mass distribution

UNIVERSITY OF SUSSEX

Calorimeter - Full granularity

I. Vivarelli - The IDEA detector - 4th FCC Physics and Experiments Workshop - 10-13 November 2020

$C: \frac{\sigma}{E} = \frac{19\%}{\sqrt{E(\text{GeV})}} + 0.1\%$ 0.07 0.06 0.05 0.04 0.03 0.02 Combined : $\frac{\sigma}{E} = \frac{13\%}{\sqrt{E (\text{GeV})}} + 0.2\%$ 0.01 0 0.2 0.3 0.4 1/ VE (GeV) 0.07 Entries / sum of entries 0.06 Energy (GeV) 150 100 70 50 0.05 0.25 Pions 0.04 100 GeV 0.2 pions 0.03 $\frac{\sigma}{E} = \frac{31\%}{\sqrt{E(GeV)}} + 0.4\%$ 0.15 protons 0.02 neutrons 0. kaons 0.01 0.05 0 60 40 80 100 120 140 160 Reconstructed energy (GeV)

ЗÄ

0.09

0.08

ЧË

 $S: \frac{\sigma}{E} = \frac{18\%}{\sqrt{E \,(\text{GeV})}} + 0.6\%$

0.15

0.2

0.25

0.3 1/ VE (GeV)

I. Vivarelli - The IDEA detector - 4th FCC Physics and Experiments Workshop - 10-13 November 2020

OF SUSSEX

90

100

Cherenkov signal

Combined

Particle level

Calorimeter - jets

- IDEA: pure calorimetric measurement compared with a "track aided" calibration
- Full collision events used

 $e^+e^- \rightarrow ZH \rightarrow jj\tilde{\chi}_0^1\tilde{\chi}_0^1$ $e^+e^- \rightarrow WW \rightarrow jj\mu\nu$ $e^+e^- \rightarrow ZH \rightarrow \nu\nu bb$

2000

1800

1600

1400

1200 1000

> 800 600

OF SUSSEX

R&D and ideas

Low-power, high speed MAPS within ARCADIA Large-area silicon sensors developments based on AtlasPix3

Requirements	ARCADIA
Pixel pitch (um)	20 - 25
Thickness (um)	50 - 100
Scalability (cm)	Up to \sim 4 x 4
Hit rate (MHz/cm ²)	10 ightarrow 100
Cluster size (pixels)	2-4
Timing res. (ns)	10
Power (mW/cm^2)	< 20
Rad. Hard (Mrad)	1
Tiling	Side-buttable
Trigger	Triggerless

technology

Light mechanics and new wire

Cluster counting electronics

First Implementation

▶ Target hit rate: 100MHz/cm ²
▶ Target efficiency: 99.9% (in every regard)
▶ Pixel size: 20µm × 20 µm
Double column arrangement
▶ Support for 2048 pixels in column (4cm)

Calorimetry: considering an option with crystals in front 2 segments of 5 and 15 cm of PbWO₄, EM resolution ~ $3\%/\sqrt{E}$ + timing layer See talk from M. Lucchini in this workshop

2021 calorimeter test-beam

- "Bucatini" calorimeter being assembled to be put on beam at DESY in February 2020 (COVID permitting)
- Scalable mechanical option brass tubelets with 2 mm (1.1 mm) outer (inner) diameter
- 9 towers 3.3 x 3.3 x 100 cm³, central one read with SiPM (15 μm pitch), the others with ordinary PMTs

OF SUSSEX

- •Readout of SiPMs with 5 readout boards (A5202)
 - •Ad-hoc solution for Test beam
- R&D for full-scale production under active investigation

See talk from A. Karadzhinova-Ferrer at this workshop

Summary

- I outlined a few ongoing activities on many fronts:
 - But **a lot more** on the table:
 - Exploration of Digital Photon Counters, 3D printing for calorimeter, MAPS R&D, etc.
 - Particle flow, ML for simulation and reconstruction, particle ID, 4and 6-jets events, etc.
 - IDEA receiving **significant funding under AlDAinnova** further significant funds on dual-readout calorimeter in Korea (PI: H. Yoo)
- Room for collaboration and new ideas on many fronts.

1.5 Energy (GeV)

I. Vivarelli - The IDEA detector - 4th FCC Physics and Experiments Workshop - 10-13 November 2020

Electrons

Pions

- The use of the single-fibre granularity yields the ultimate angular resolution of the calorimeter.

- Position obtained as the energy-weighted fibre mean.

Angular resolutions

45

I. Vivarelli - The IDEA detector - 4th FCC Physics and Experiments Workshop - 10-13 November 2020

Calibration with electrons

From now on using tower granularity.

- Light yield tuned according to Test Beam results.
- •After tower equalisation, energy deposited by electrons used as pe/GeV calibration factor.

- Current IDEA calorimeter inner radius 2.5 m; outer radius 4.5.
 - **Reject events with poor containment** to focus on performance
- Evaluating performance using coarse granularity.

50000

1.072

9 10 Energy (GeV)

Jet response

- Studied in di-jet events so far (reconstructed with ee_genkt algorithm in two exclusive jets).
- Separately reconstructing S, C and truth-level jets.
- Event cleaning: **central jets only** considered; reject events with **muons or neutrinos or poor containment**.
- Two options considered (with and without $1X_0$ of additional "tracker" material):

Particle identification

- Compare **electron and pion** shower shapes (20 GeV).
- Consider also **Time of arrival** of signal to SiPM (fiber propagation and SiPM + electronics time response parametrised in full sim).
- Combined performance: $\varepsilon = 99.5\%$, fake ~1%.

Tau decay identification

Some advanced applications on object reconstruction and identification are proceeding in parallel to the analytical approach. Some examples: tau lepton decays identification.

Data preprocessing needed to reduce data size and fit GPU memory

- •Signals from fibers in each 1.2x1.2 cm² module are integrated to obtain a 111x111 matrix
- •5 information used for each matrix element: signal integral, signal height, peak position,
- time of crossing threshold and time-over-threshold
- •Independently done for scintillation and Cherenkov fibers
- •Each event is a 111x111x10 tensor

0	pi0 pi- nu_tau	
1	e- anti_nu_e nu_tau	
2	mu- anti_nu_mu nu_tau	
3	pi- nu_tau	
4	pi- pi- pi+ nu_tau	
5	pi0 pi0 pi- nu_tau	

OF SUSSEX

- •Using 5M $e^+e^- \rightarrow ZH \rightarrow \nu\nu\gamma\gamma$ events and clustering opposite calorimeter hemispheres as photons.
- Dedicated calibration corrections for impact point on tower

- •Using tower granularity (estimated use of full granularity further improves mass resolution by 20%)
- Combined mass resolution
 2 GeV

SiPM dual readout

- Single fibre readout with **HAMAMATSU SiPM.**
- Readout for Cherenkov and Scintillation light separated to minimise cross talk (the latter expected to be ~ 50 times larger if not attenuated).

Čerenkov SiPM array

Scintillation SiPM array UNIVERSITY OF SUSSEX