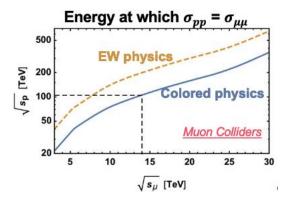


Muon Collider Detector

Material from (in no particular order): D. Lucchesi, D. Buttazzo, P. Maede, N. Pastrone, F. Collamati, C. Curatolo, A. Mereghetti, P. Sala, L. Sestini, M. Casarsa, N. Bartosik, C. Aime`, C. Riccardi, P. Salvini, I. Vai, N. Valle, L. Buonincontri, L. Giambastiani, G. Dal Molin, R. Venditti, M. Mastrapasqua

Alessandro Cerri


UNIVERSITY OF SUSSEX

Physics Motivation

HE Muon collider described as "simply a dream machine":

- Direct searches (pair production, VBF, resonances, DM, ...)
- High-rate measurements (single H, self coupling, rare H decays, top,)
- High energy probes (di- and tri-boson, di-fermion, EFT, compositeness...)
- Muon physics (LFU, b→sµµ, g-2, …)

Exciting new perspective in the collide interest from the theory community!

lit's Competitive:

к-0	HL-LHC	LHeC	HE	-LHC		ILC			CLIC	;	CEPC	FC	C-ee	FCC-ee/	$\mu^+\mu^-$	
fit			S2	S2'	250	500	1000	380	1500	3000		240	365	eh/hh	10000	
κ_W [%]	1.7	0.75	1.4	0.98	1.8	0.29	0.24	0.86	0.16	0.11	1.3	1.3	0.43	0.14	0.06	
$\kappa_Z \ [\%]$	1.5	1.2	1.3	0.9	0.29	0.23	0.22	0.5	0.26	0.23	0.14	0.20	0.17	0.12	0.23	arXiv
$\kappa_g~[\%]$	2.3	3.6	1.9	1.2	2.3	0.97	0.66	2.5	1.3	0.9	1.5	1.7	1.0	0.49	0.15	2
κ_{γ} [%]	1.9	7.6	1.6	1.2	6.7	3.4	1.9	98*	5.0	2.2	3.7	4.7	3.9	0.29	0.64	03.1
$\kappa_{Z\gamma}$ [%]	10.	-	5.7	3.8	$99\star$	$86\star$	$85\star$	$120 \star$	15	6.9	8.2	81*	$75\star$	0.69	1.0	4043
$\kappa_c \ [\%]$	-	4.1	-	-	2.5	1.3	0.9	4.3	1.8	1.4	2.2	1.8	1.3	0.95	0.89	ω
$\kappa_t \ [\%]$	3.3	-	2.8	1.7	-	6.9	1.6	-	_	2.7	-	-	—	1.0	6.0	
$\kappa_b \ [\%]$	3.6	2.1	3.2	2.3	1.8	0.58	0.48	1.9	0.46	0.37	1.2	1.3	0.67	0.43	0.16	
κ_{μ} [%]	4.6	-	2.5	1.7	15	9.4	6.2	$320 \star$	13	5.8	8.9	10	8.9	0.41	2.0	
κ_{τ} [%]	1.9	3.3	1.5	1.1	1.9	0.70	0.57	3.0	1.3	0.88	1.3	1.4	0.73	0.44	0.31	
							-									

Abstract

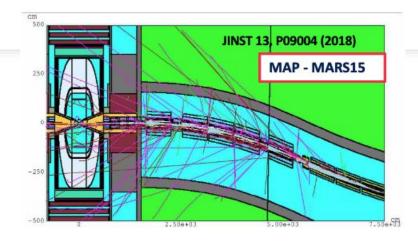
We lay out a comprehensive physics case for a future high-energy muon collider, exploring a range of collision energies (from 1 to 100 TeV) and luminosities. We highlight the advantages of such a collider over proposed alternatives. We show how one can leverage both the point-like nature of the muons themselves as well as the cloud of electroweak radiation that surrounds the beam to blur the dichotomy between energy and precision in the search for new physics. The physics case is buttressed by a range of studies with applications to electroweak symmetry breaking, dark matter, and the naturalness of the weak scale. Furthermore, we make sharp connections with complementary experiments that are probing new physics effects using electric dipole moments, flavor violation, and gravitational waves. An extensive appendix provides cross section predictions as a function of the center-of-mass energy for many canonical simplified models.

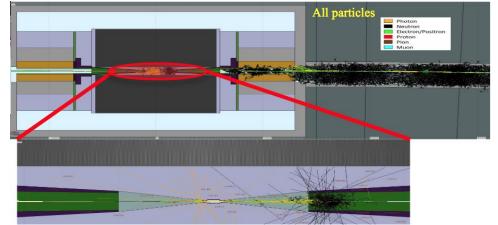
5	Cor	nplementarity	58	ţ
	5.1	EDMs	58	Ĭ
	5.2	Flavor	60	
	5.3	Gravitational waves	67	

Muon collider as potential direct probe of indirect signals from EDM, Flavour, Gravitational Waves...

...and complementary!

		$N_{ m post-cuts}$		
\sqrt{s} (TeV)	$\mu^+\mu^- \to \mu\tau$	$\mu^+\mu^- o \mu au u_\mu u_ au$	$\mu^+\mu^- \to \tau^+\tau^-$	
.125	0.0948	30.8	3.42×10^4	2
3	53.3	6.32×10^3	40.4	
6	212	3.26×10^3	9.52	
14	1.14×10^3	1.14×10^3	0.138	-
100	$5.73 imes 10^4$	60.9	0.0312	


Table 5: Number of signal and background events after kinematic cuts and estimating the loss of signal efficiency due to initial state radiation for 1 ab⁻¹ of data and $c^{\tau_{3\mu}}/\Lambda^2 = 1/(50 \text{ TeV})^2$.


Δ

Challenges for a Muon Collider Detector

Prototypical machine design to deliver:

- 1 bunch/beam
- Collision spacing: 10 / 15 μs @ 1.5 / 3 TeV
- σ_z~10 / 5 mm @ 1.5 / 3 TeV
- Beam Induced Background:
 - Muon decays 4E5 decays/m/crossing at 3 TeV
 - Tertiary muons produced far from collision points
 - Showers from final triplets

Baseline Detector Model optimization @1.5 [3] TeV

hadronic calorimeter

- 60 layers of 19-mm steel absorber + plastic scintillating tiles;
- 30x30 mm² cell size;

electromagnetic calorimeter

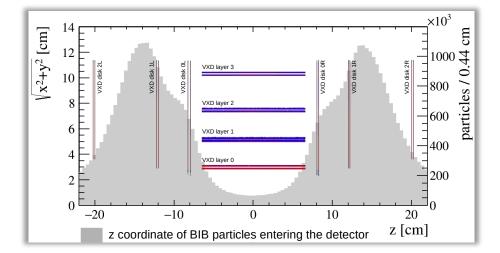
- 40 layers of 1.9-mm W absorber + silicon pad sensors;
- 5x5 mm² cell granularity;
- 22 X₀ + 1 λ₁.

muon detectors

- 7-barrel, 6-endcap RPC layers interleaved in the magnet's iron yoke;
- 30x30 mm² cell size.

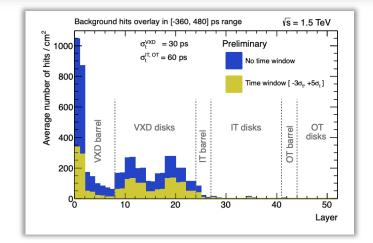
superconducting solenoid (3.57T)

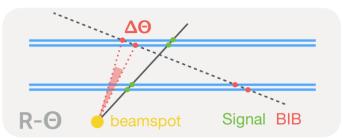
tracking system


- Vertex Detector:
 - double-sensor layers (4 barrel cylinders and 4+4 endcap disks);
 - 25x25 µm² pixel Si sensors.
- Inner Tracker:
 - 3 barrel layers and 7+7 endcap disks;
 - 50 µm x 1 mm macropixel Si sensors.
- Outer Tracker:
 - 3 barrel layers and 4+4 endcap disks;
 - 50 µm x 10 mm microstrip Si sensors.

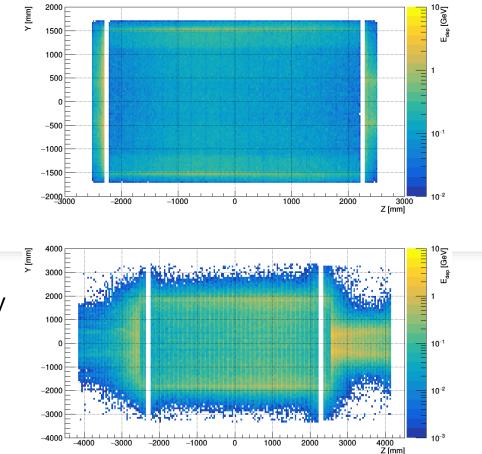
shielding nozzles

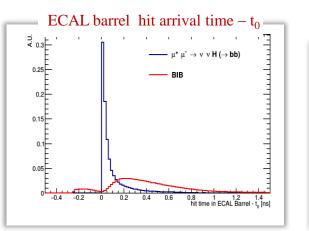
Tungsten cones + borated polyethylene cladding.

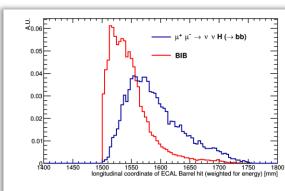

- CLIC baseline detector model model
- MAP-designed MDI and vertex detector


Tracker [1.5 TeV]

Main focus on BIB effects:

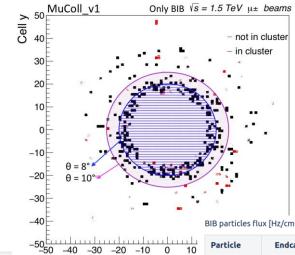

- Design avoids "hottest" BIB regions
- Readout timing window tuned to exclude out of time BIB
- Granularity tuned to ≲1% occupancy
- Additional expedients under study against BIB:
 - Cluster shape
 - Use of PV for angular matching of doublets
- What about secondary vertices and LLP?





Calorimeters

- BIB deposits large amounts of energy both in EM and Hadr. Calorimeters
- Timing and shower profile allow in principle to distinguish:



Computational (& DAQ?) challenge in efficient separation from BIB background!

Muon Detectors

Particle

neutrons

photons

protons

pions, kaons

μ+ μ-

e+ e-

Total

BIB particles flux [Hz/cm²] in different regions (bunch crossing time 10 µs): Endcap

(8° < θ < 12°)

5 · 10⁴

1.104

3 · 10²

3.7 · 10²

70

3.3 · 10²

 $\approx 60 \text{ kHz/cm}^2$

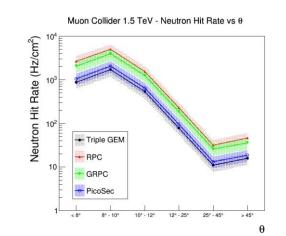
Endcap

(θ < 8°)

1.2 · 10⁶

 $7.2 \cdot 10^{5}$

 $2.4 \cdot 10^{4}$


 $1.2 \cdot 10^{4}$

 $1 \cdot 10^{3}$

 $5 \cdot 10^{3}$

≈ 2 MHz/cm²

- Several detector technologies • explored
- BIB not a performance issue of • properly handled

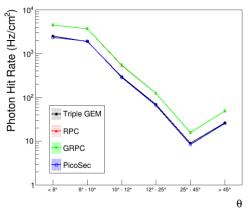
Muon Collider 1.5 TeV - Photon Hit Rate vs 0

Endcap

(θ >12°)

 $1.2 \cdot 10^{3}$

 $6.2 \cdot 10^{2}$


16

3

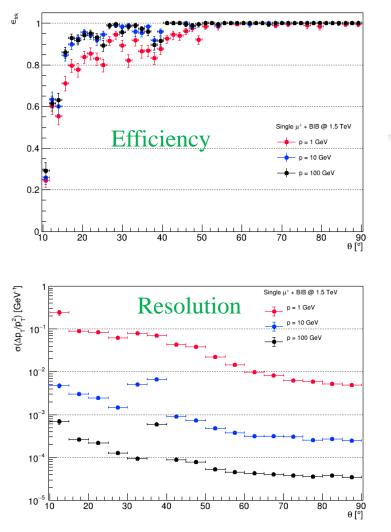
< 1

3

 $\approx 2 \text{ kHz/cm}^2$

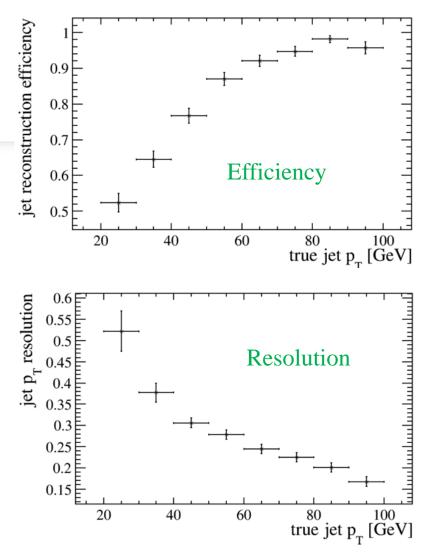
Barrel

 $1.4 \cdot 10^{2}$

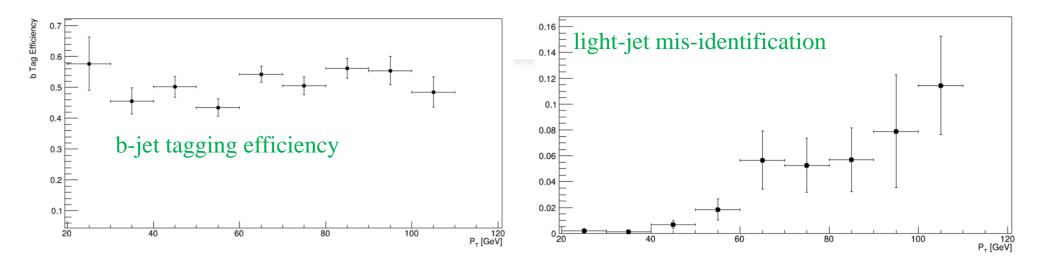

5

< 1

≈ 200 Hz/cm²

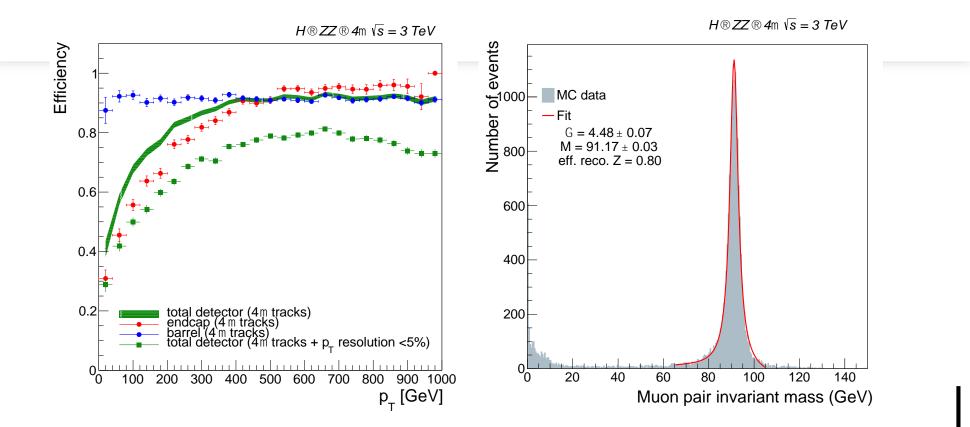

27 Sept. 2021

Tracking and Jet reconstruction performance



- Efficiency drops in nozzle region
- Resolution
 degrades too

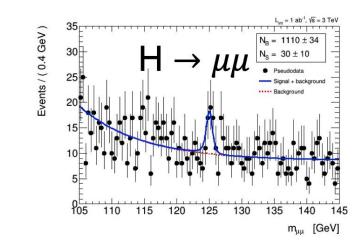
Need further optimization of detectors and algorithms!


B-jets and Secondary Vertex Reconstruction

B-jet ID

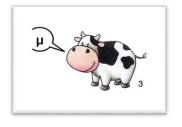
- Regional-tracking selected tracks
- Early steps towards b-tagging *work*in*progress*
 - ML approach under study

Muon Reconstruction



27 Sept. 2021

Beyond "detector performance"


As detector design and simulation mature, detailed physics studies become possible

 Growing engagement within the Snowmass process

SUSY channels to study muon reconstruction performance at the Muon er. Chiara Alme ⁽ (Pavia University and RFN (UT)) oater_EPS.pdf n a calorimeter system for the Muon Collider experiment er. Lorenzo. Sestini (University et RFN. Padova (UT)) oster_mucolt_calo etcs for the measurement of oH x BR(H → µµ) at a 3-TeV muon collider er. Alessandro Montella (University of Trieste and INFN-Trieste) numu_mucolt_eps et of Beam Induced background at muon collider er. Francesco Collamati (MFN Roma 1 (UT)) ing and track reconstruction at a muon collider in the presence of beam-induced background	© 20m 2 © 20m 2 © 20m 2 © 20m 2 © 20m 2
n a calorimeter system for the Muon Collider experiment er. Lorenzo Sestifi (Universita e INPN, Padova (IT)) oster_mucolt_calo etcts for the measurement of oH x BR(H → µµ) at a 3-TeV muon collider er. Alessandro Montella (University of Trieste and INPN-Trieste) numu_mucolt_sps of Beam Induced background at muon collider er. Francesco Collamati (INFN Roma I (IT)) ing and track reconstruction at a muon collider in the presence of beam-induced background	© 20m 🖉 © 20m 🖉
er: Lorenzo Sestini (Universita e INFN, Pedova (IT)) oster_mucolL_calo ects for the measurement of oH x BR(H → μμ) at a 3-TeV muon collider er. Alessandro Montella (University of Trieste and INFN-Trieste) mumu_mucolL_eps of Beam Induced background at muon collider er: Francesco Collamati (MFN Rema I (IT)) ing and track reconstruction at a muon collider in the presence of beam-induced background	© 20m 🖉 © 20m 🖉
ects for the measurement of oH x BR(H → μμ) at a 3-TeV muon collider er. Alessandro Montella (University of Trieste and INFN-Trieste) mumu_mucell_eps of Beam Induced background at muon collider er. Francesco Collamati (MFN Roma I (IT)) ing and track reconstruction at a muon collider in the presence of beam-induced background	© 20m 🖉
er. Alessandro Montella (University of Trieste and INTN-Trieste) numu_mucoll_eps	© 20m 🖉
of Beam Induced background at muon collider er: Francesco Collamati (NFN Roma I (ITI)) ing and track reconstruction at a muon collider in the presence of beam-induced background	
er: Francesco Collamati (MFN Rema I (ITT)) ing and track reconstruction at a muon collider in the presence of beam-induced background	
	© 20m 2
er: Hannsjorg Weber (Humboldt University of Berlin (DE))	
aweber_EPS2021	
ing with ACTS for a Muon Collider detector er: Karol Krizka (Lawrence Berkeley National Lab. (US))	@20m 2
acking.pdf	
	@20m 2
uCol_EPS2021_er	
	© 20m 🖌
	©20m 2
k k	

Summary

The Muon Collider appeal:

- Exciting physics potential
- Novelty of approach
- Complementarity to other future technologies
- ...but also an exciting detector and DAQ R&D challenge!

Early detector design under study:

- CLIC inspired
- BIB driven
- Exciting challenge:
 - Detector technology
 - DAQ and data handling
 - Computing