Theorist's perspective: BSM & flavour

Sebastian Jäger (University of Sussex)

EPP Meeting University of Sussex, 13 October 2021

Precision frontier: beyond QED

Some past indirect discoveries

- parity violation
- V-A structure of weak interactions
- universality of weak decays
- **CP** violation
- electroweak symmetry breaking
- charm to explain $K_L \rightarrow \mu \mu$ suppression Glashow, Ilic
- third generation to explain CPV

Neutral currents ('73), charm('74), 3rd gen. ('75), W,Z ('83), Higgs ('12) later discovered. $d > \checkmark u$

$$H_W \sim G_F \left(\bar{p} \gamma^\mu n \right) \left(\bar{e} \gamma_\mu \nu \right)$$
(Fermi 1934)

Lee, Yang 1956 Wu et al, Goldhaber et al 1957

Feynman, Gell-Mann 1957 Shudarshan, Marshak 1957

Gell-Mann, Levy 1960

Christenson et al 1964

BEHGHK, Glashow, Salam, Weinberg 1960-67

Glashow, Iliopoulos, Maiani 1970

Kobayashi, Maskawa 1972

W

The Standard Model

spin 0

Higgs - sets mass scale of entire Standard Model

Origin of masses? Flavour mixings? What determines the weak scale?

Dynamics

At length scales above an attometre we have approximately (up to gravity)

 ϕ

 $\propto y_t^2 M^2$

$$-\bar{u}_R Y^U \phi^{c\dagger} q_L - \bar{d}_R Y^D \phi^{\dagger} q_L - \bar{e}_R Y^E \phi^{\dagger} l_L \phi^2 \phi^{\dagger} \phi -$$

flavour-breaking fermion masses and Higgs couplings

Quadratic divergence from flavour-breaking sources -> any cure likely to be flavour-breaking (happens in SUSY, composite Higgs, ...)

Beyond the SM

Flavour physics & rare decays

all flavour violation in charged weak current

(tree level) neutral current conserves flavor

strong & electromagnetic preserve flavour

Loop and CKM/GIM suppression of flavour-changing neutral current processes

-> enhanced BSM sensitivity

Flavour: the dogs that did not bark

From AC Doyle, "The Adventure of Silver Blaze" [with thanks to J Ellis]

> Gregory (Scotland Yard detective): "Is there any other point to which you would wish to draw my attention?"

Holmes: "To the curious incident of the dog in the night-time."

Gregory: "The dog did nothing in the night-time Holmes: "That was the curious incident."

Quote and S Paget's illustration via Wikipedia

Absence of an effect in a BSM-sensitive observable can be as important a clue as an anomaly.

Eg Meson-antimeson mixing \rightarrow constrain NP scales up to 10⁵ TeV (for maximally flavor-violating BP)

Where to look

Observables with suppressed and/or controlled SM contribution

- flavour-changing neutral currents, eg Meson-antimeson mixing (B_s, B_d, D, K) $b \rightarrow s\mu^+\mu^-$ and $b \rightarrow s\gamma$ $B \rightarrow K^{(*)} \mu^+\mu^-$, $B \rightarrow K^{(*)}e^+e^-$, $B_s \rightarrow \phi\mu^+\mu^ B \rightarrow X_s \mu^+\mu^-$, $B \rightarrow X_s \gamma$ $s \rightarrow dvv$ $K^+ \rightarrow \pi^+ v v$ - lepton-flavour ratios, eg $BD(B \rightarrow K^{(*)} \mu^+\mu^-) (BD(B \rightarrow K^{(*)}e^+e^-) = 1$ Babar, Belle, LHCb

BR(B \rightarrow K^(*) µ⁺µ⁻)/BR(B \rightarrow K^(*)e⁺e⁻) - 1 BR(B \rightarrow D^(*) TV)/BR(B \rightarrow D^(*)IV) – (SM)

- CP violation, eg

$$\begin{array}{ll} \mathsf{K}_{\mathsf{L}} & \to \pi \, \pi & (\epsilon_{\mathsf{K}}, \, \epsilon^{'}{}_{\mathsf{K}}) \\ \mathsf{K}_{\mathsf{L}} & \to \pi^{0} \, \mathsf{V} \, \mathsf{V} \end{array}$$

..., NA48, KTeV KOTO

Belle₂

ATLAS analyses

Analysis	Expected/plausible BSM scale	theory	current BSM significance
B(s,d) -> mu mu	(few) TeV (nat'lness)	excellent	2-3 σ
RK(*)	(few) TeV (nat'Iness)	excellent	3-4 σ
B->K*mu mu (ee?) angular	(few) TeV (nat'lness)	good (P5') to excellent (rh current)	unclear
Tau->3 mu	GUT scale or below	excellent	none
B->J/psi phi etc	(few) TeV	depends	none
B lifetimes	(few) TeV	depends	none
4 muons searches			
Bc/Bc(2S)		tsido scopo of what I ca	n discuss in this talk
Pentaquark/Zc		itside scope of what i ca	
CPV in b from ttbar	J		

Rare B-decay: short-distance (theory)

BSM (and SM weak interactions) enter flavour physics through effective contact interactions (SMEFT/H_{weak}) in SM mainly

C₉: dilepton from vector current

 $(\bar{s}\gamma_{\mu}P_{L}b)(\bar{l}\gamma^{\mu}l)$

- C₁₀: dilepton from axial current $(\bar{s}\gamma_{\mu}P_{L}b)(\bar{l}\gamma^{\mu}\gamma^{5}l)$
- C₇: dilepton from dipole

 $(\bar{s}\sigma^{\mu\nu}P_Rb)F_{\mu\nu}$

+parity conjugate "right-handed currents" - C_7 ', C_9 ', C_{10} suppressed by m_s/m_b in SM Alternative basis with chiral leptons I_L , I_R

 $C_{L} = (C_{9}-C_{10})/2$ $C_{R} = (C_{9} + C_{10})/2$

Can also have real photon

Also "clean": Lepton-flavour ratios

$$R_{K^{(*)}}[a,b] = \frac{\int_{a}^{b} \frac{d\Gamma}{dq^{2}} (B \to K^{(*)} \mu^{+} \mu^{-}) dq^{2}}{\int_{a}^{b} \frac{d\Gamma}{dq^{2}} (B \to K^{(*)} e^{+} e^{-}) dq^{2}}$$

Theory uncertainties largely cancel out, negligible relative to experiment.

leading is QED: net effect <1% after experimental corrections Bordone, Isidori, Pattori 2016; Isidori, Nabeebaccus, Zwicky 2020

Situation in 2017 (first RK* measurement):

Rare B-decay anomalies – fit to data

Observables in the fit

Basic idea: use only observables which are sensitive to b->s | | but independent of hadronic form factors, long-distance charm etc.

I.e. $R_{K(*)}$ and $B_s \rightarrow mu mu$.

This is a well-defined set of observables, first employed in 2017, with several data updates since then. No "look-elsewhere effect" to take into account.

In the following I describe the fit in arXiv:2103.12738 (Geng, Grinstein, SJ, Li, Martin Camalich, Shi); see also work by Altmannshofer & Stangl and a few others

A note on the $B_s \rightarrow \mu \mu$ input

Together with the R_{K^*} update, LHCb presented a significant update to $BR(B_s \rightarrow \mu \mu)$

ATLAS and CMS have also measured this

Measurements show non-negligible correlations with $BR(B_d \rightarrow \mu \mu)$ (biggest in ATLAS).

Hence to obtain a BR($B_s \rightarrow \mu \mu$) average first combine the 3x2 measurements.

Then profile over BR($B_d \rightarrow \mu \mu$).

$B_q \rightarrow \mu \mu$ world combination

Geng, Grinstein, SJ, Li, Martin Camalich, Shi arXiv:2103.12738

13 October 2021

Sebastian Jaeger - EPP seminar

Input data

Observable	Value	Source	Reference	
	$(2.8^{+0.8}_{-0.7}) \times 10^{-9}$	ATLAS	[11]	
$BR(B_s \to \mu^+ \mu^-)$	$(2.9\pm 0.7\pm 0.2)\times 10^{-9}$	CMS	[12]	
	$(3.09^{+0.46+0.15}_{-0.43-0.11}) \times 10^{-9}$	LHCb update	[10]	
	$(2.842 \pm 0.333) \times 10^{-9}$	our average	this work	
	$(3.63 \pm 0.13) \times 10^{-9}$	SM prediction	[13]	
$R_{K}[1.1, 6]$	0.846 ± 0.044	LHCb	[6]	
$R_{K}[1, 6]$	1.03 ± 0.28	Belle	[14]	
$R_{K^*}[0.045, 1.1]$	0.660 ± 0.113	LHCb	[15]	
$R_{K^*}[1.1, 6]$	0.685 ± 0.122	LHCb	[15]	
$R_{K^*}[0.045, 1.1]$	0.52 ± 0.365	Belle	[16]	
$R_{K^*}[1.1, 6]$	0.96 ± 0.463	Belle	[16]	

Self-consistency of dataset: χ^2_{min} = 4.61 (8 d.o.f.) / p = 0.80 (counting 6 BR(B_q \rightarrow µµ) measurements)

SM p-value is 5.4 x 10⁻⁵ (4.0 σ) [counting BR(B_s \rightarrow µµ) average] reduces to 3.5 σ when counting the 6 BR(B_q \rightarrow µµ) measurements separately ^{13 October 2021}

Clean fit: results: 2-parameter BSM fit

Geng, Grinstein, SJ, Li, Martin Camalich, Shi arXiv:2103.12738

Clean fits: numerical results

Geng, Grinstein, SJ, Li, Martin Camalich, Shi arXiv:2103.12738 Fit three 1-parameter scenario (vectorial, axial, left-handed coupling to muons)

TABLE II. Best fit values, χ^2_{\min} , *p*-value, Pull_{SM} and confidence intervals of the Wilson coefficients in the fits of the R_K , R_{K^*} , $B_s \rightarrow \mu\mu$ dat only using Gaussian form χ^2_{th} . For the cases of single Wilson-coefficient fits, we show the 1σ and 3σ confidence intervals. In the $(\delta C_9^{\mu}, \delta C_{1\mu}^{\mu})$ case, the 1σ interval of each Wilson coefficient is obtained by profiling over the other one to take into account their correlation.

Coeff.	best fit	$\chi^2_{\rm min}$	<i>p</i> -value	Pull _{SM}	1σ range	3σ range	ρ
δC_9^{μ}	-0.82	14.70 [6 dof]	0.02	4.08	[-1.06, -0.60]	[-1.60, -0.20]	_
δC^{μ}_{10}	0.65	6.52 [6 dof]	0.37	4.98	[0.52, 0.80]	[0.25, 1.11]	-
δC_L^μ	-0.40	7.36 [6 dof]	0.29	4.89	[-0.48, -0.31]	[-0.66, -0.15]	_
$(\delta C_9^\mu, \delta C_{10}^\mu)$	(-0.11, 0.59)	638 [5 dof]	0.27	4.62	$\delta C_9^{\mu} \in [-0.41, \ 0.17]$	$\delta C_{10}^{\mu} \in [0.38, \ 0.81]$	0.762
$(\delta C_L^{\mu}, \delta C_R^{\mu})$	(-0.35, 0.25)	0.56 [5 001]	0.27	4.02	$\delta C_L^{\mu} \in [-0.45, -0.26]$	$\delta C_R^{\mu} \in [0.00, 0.48]$	0.406

Note that C_L is well-determined in both the left-handed and the two-parameter scenario, with consistent values. Not true for C_9 . Pure C_9 model also much worse fit (p=1/50).

$$R_{K}^{(*)}$$
 and C_{L}

Assume here that the BSM effect is in the muonic mode, and no right-handed currents.

Because in the SM, $|C_R|$, $|C_7| << |C_L|$, BR \approx const $|C_L^{SM} + C_L^{BSM}|^2 + ... \approx$ const $|4 + C_L^{BSM}|^2$ +positive

 $BR(B \rightarrow K(*)\mu\mu) =$ SM value

Only C_L^{BSM} can interfere destructively: $R_K^{(*)}$ point to purely left-handed coupling

 $(\bar{s}_L \gamma^\mu b_L) (\bar{\mu}_L \gamma_\mu \mu_L)$

with ~ -(10-15)% of SM value

Left plot: extra data pulls fit approx. along the C_R direction. $C_L=0$ remains excluded at high confidence. p(SM) up at 0.02 Right plot: effect of increasing hadronic uncertainties

13 October 2021

Sebastian Jaeger - EPP seminar

Minimal contact interaction

In summary, the B-decay anomalies suggest at a minimum the interaction

$$\frac{1}{\Lambda^2} \left(\bar{s}_L \gamma^\mu b_L \right) \left(\bar{\mu}_L \gamma_\mu \mu_L \right)$$

numerically $\Lambda \sim 40 \text{ TeV}$

Small enough to be a loop effect even BSM (as it is in SM!)

Non-rare semileptonic decays

large effect; theory error still (almost) negligible

$$\begin{aligned} & \text{Possible BSM} \\ \mathcal{L}_{\text{eff}}^{\text{LE}} \supset & -\frac{4G_F V_{cb}}{\sqrt{2}} [(1 + \epsilon_L^{\tau})(\bar{\tau}\gamma_{\mu}p_L v_{\tau})(\bar{c}\gamma^{\mu}P_L b) + \epsilon_R^{\tau}(\bar{\tau}\gamma_{\mu}P_L) + \epsilon_R^{\tau}(\bar{\tau}\gamma_{\mu}P_L b) \\ & + \epsilon_{S_L}^{\tau}(\bar{\tau}P_L v_{\tau})(\bar{c}P_L b) + \epsilon_{S_R}^{\tau}(\bar{\tau}P_L v_{\tau})(\bar{c}P_R b) + \epsilon_T^{\tau}(\bar{\tau}\sigma_{\mu\nu}P_L v_{\tau})(\bar{c}\sigma^{\mu\nu}P_L b)] + \text{H.c.}, \end{aligned}$$

Best fit value moved substantially closer to SM with Belle 2019 update

Different BSM operators imply different correlations between shifts to RD, RD*

BSM implications of B-anomalies (qualitative)

Scale of new physics

Di Luzio, Nardecchia 2017

B-decay anomalies point to (at least) the interactions

$$\frac{1}{\Lambda^2} \left(\bar{c}_L \gamma^\mu b_L \right) \left(\bar{\nu}_\tau \gamma_\mu \tau_L \right) \qquad \qquad \frac{1}{\Lambda^2} \left(\bar{s}_L \gamma^\mu b_L \right) \left(\bar{\mu}_L \gamma_\mu \mu_L \right)$$

numerically $\Lambda \sim 4$ TeV and $\Lambda \sim 40$ TeV.

For a tree-level mediator,

$$\Lambda^{-2} = (g_{\mathsf{NP}} \mathsf{M}_{\mathsf{NP}})^{-2} \longrightarrow \mathsf{M}_{\mathsf{NP}} = g_{\mathsf{NP}} \Lambda \le 4\pi \Lambda \sim (30, 300 \text{ TeV})$$

Stronger constraint from partial-wave unitarity: maximal NP scale of below 10 (100) TeV.

If the NP is less than maximally flavour-violating, or the NP is weakly coupled, the scale will be 1-2 orders of magnitudes lower.

While the bounds are (so far) high, the fact that there are any at all should be encouraging, further refinements may be possible.

Tree-level mediators: leptoquarks

Scalar or vector leptoquarks can generate interactions

Eg Gripaios, Nardecchia, Renner, ... (Hiller, Nisandzic 2017)

$$\frac{1}{\Lambda^2} \left(\bar{c}_L \gamma^\mu b_L \right) \left(\bar{\nu}_\tau \gamma_\mu \tau_L \right) \qquad \qquad \frac{1}{\Lambda^2} \left(\bar{s}_L \gamma^\mu b_L \right) \left(\bar{\mu}_L \gamma_\mu \mu_L \right)$$

$$(3, 1, -1/3)$$
 or $(3, 3, 2/3)$ $(3, 3, -1/3)$

$$(3,1,2/3)$$
 or $(3,3,2/3)$ $(3,1,2/3)$ or $(3,3,2/3)$

(more possibilities at loop level Eg Bauer, Neubert; Becirevic et al)

(0,3,0) (0,3,0) or (0,1,0)

- appear as resonances in composite models (KK excitations in RS, vectors coupling to symmetry currents in 4D composite models)

- Z' exchange contributes to B_s mixing at tree-level. Leptoquarks do not! Isidori et al, Quiros et al, Ligeti et al, Becirevic et al, Crivellin et al,

....

Summary & outlook

Flavour provides a plethora of observables sensitive to new physics

Stringent constraints on new physics, not only from meson-antimeson mixing

Significant progress in lattice calculations for flavour phenomenology, (much) more to come

B-anomalies – independent verification by upcoming Belle2 experiment. Near-discovery level significance already with theoretically clean measurements

BACKUP

A Z' model for $R_{K(*)}$

Accommodating all b->s I I anomalies requires a muon-specific C_L – type interaction

$$\frac{1}{\Lambda^2} \left(\bar{s}_L \gamma^\mu b_L \right) \left(\bar{\mu}_L \gamma_\mu \mu_L \right)$$

with $\Lambda \sim 30 \text{ TeV}$

However, C_R is weakly constrained and can also be present.

Anomaly-free Z' model with gauged $L_{\mu} - L_{\tau}$, nonminimal (dim-6) coupling to quarks, can eg come from heavy vectorlike quarks:

The small coupling to quarks suppresses contributions to Bs mixing

Importance of virtual charm

Also purely hadronic operators enter, in SM primarily:

$$Q_1^c = (\bar{c}_L^i \gamma_\mu b_L^j) (\bar{s}_L^j \gamma^\mu c_L^i)$$
$$Q_2^c = (\bar{c}_L^i \gamma_\mu b_L^i) (\bar{s}_L^j \gamma^\mu c_L^j)$$

RG mixes these into C₉ and C₇

+ dipole

 $C_7^{\text{eff}}(4.6 \text{GeV}) = 0.02 C_1(M_W) - 0.19 C_2(M_W)$

 $C_9(4.6 \text{GeV}) = 8.48 C_1(M_W) + 1.96 C_2(M_W)$

SM: O(50%) of total in both cases!

- At $\mu = m_b$: $C_7^{eff} \sim -0.3$, $C_L \sim 4$, $C_R \approx 0$
- SM: accidentally almost left-chiral muon interactions

- Long-distance virtual charm important theory uncertainty 13 October 2021 Sebastian Jaeger - EPP seminar 32

C_9 from BSM $(\bar{s}b)(\bar{\tau}\tau)$ operators

Bobeth, Haisch arXiv:1109.1826 Crivellin et al arXiv:1807.02068

Similarly strong RG mixing into C₉ as in charming BSM case

- This operator is automatically present for "left-handed" $R_{D(*)}$ explanations via $(\bar{c}_L \gamma^{\mu} b_L) (\bar{\nu}_{\tau} \gamma_{\mu} \tau_L)$

This is a consequence of SU(2)_W symmetry and the experimental bound on $B \rightarrow K^*vv$ Buras et al arXiv:1409.4557

- Radiatively generated C_9 is again O(1) and negative (and lepton-universal)

τ

"low q2 / large recoil"

"high q² / low recoil"

Rare decay null tests of the SM

2 clean null tests of SM from (mainly) $B \rightarrow K^*\gamma$ and $B \rightarrow K^*\mu\mu$

$$P_1 \equiv \frac{I_3 + \bar{I}_3}{2(I_2 + \bar{I}_2)} = \frac{-2\operatorname{Re}(H_V^+ H_V^{-\star} + H_A^+ H_A^{-\star})}{|H_V^+|^2 + |H_V^-|^2 + |H_V^+|^2 + |H_V^-|^2}$$

$$P_{3}^{CP} \equiv -\frac{I_{9} - \bar{I}_{9}}{4(I_{2s} + \bar{I}_{2s})} = -\frac{\operatorname{Im}(H_{V}^{+}H_{V}^{-*} + H_{A}^{+}H_{A}^{-*})}{|H_{V}^{+}|^{2} + |H_{V}^{-}|^{2} + |H_{A}^{+}|^{2} + |H_{A}^{-}|^{2}} \approx$$

 $\frac{I_3 + I_3}{2(I_{2s} + \bar{I}_{2s})} = \frac{-2 \operatorname{Re}(H_V^+ H_V^{-*} + H_A^+ H_A^{-*})}{|H_V^+|^2 + |H_V^-|^2 + |H_A^+|^2 + |H_A^-|^2} \approx 0 \quad (\text{Melikhov 1998})$ $= -\frac{I_9 - \bar{I}_9}{4(I_{2s} + \bar{I}_{2s})} = -\frac{\operatorname{Im}(H_V^+ H_V^{-*} + H_A^+ H_A^{-*})}{|H_V^+|^2 + |H_V^-|^2 + |H_A^+|^2 + |H_A^-|^2} \approx 0 \quad (\text{Melikhov 1998})$ $\approx 0 \quad (\text{Melikhov 1998})$ $= -\frac{I_9 - \bar{I}_9}{4(I_{2s} + \bar{I}_{2s})} = -\frac{\operatorname{Im}(H_V^+ H_V^{-*} + H_A^+ H_A^{-*})}{|H_V^+|^2 + |H_V^-|^2 + |H_A^+|^2 + |H_A^-|^2} \approx 0 \quad (\text{Melikhov 1998})$

Vey suppressed in the absence of right-handed currents. No effect seen in data.

'Pseudo-observables:' Wilson coefficients from global fit

 $C_{7\gamma}^{\prime}=0.018\pm0.037$ Aebischer et al arXiv:1903.10434 $C_{\mathbf{q}V}^{\prime}=0.09\pm0.15$ Paul & Straub arXiv:1608.02556

Decay amplitude structure

Two mechanisms to produce dilepton in & beyond SM

- via axial lepton current (in SM: Z, boxes) C10

K^{*} helicity $H_A \bigotimes \propto \tilde{V}_{\lambda}(q^2) C_{10} - V_{-\lambda}(q^2) C'_{10}$

one form factor (nonperturbative) per helicity amplitudes factorize naively [nb - one more amplitude if not neglecting lepton mass]

- via vector lepton current (in SM: (mainly) photon) C7, C9, hadronic hamiltonian

Natural, systematic discussion in terms of helicity amplitudes SJ, Martin Camalich 2012, 2014 Photon pole absent for helicity-0 (form factor rescaling)

13 October 2021

Rare B-decay: observables

Branching ratios

leptonic (differential in dilepton mass) B_s→μμ, B_d→μμ,

Nonperturbative QCD fully controlled (decay constant from lattice)

semileptonic (differential in dilepton mass) $B \rightarrow K^{(*)}\mu\mu$, $B \rightarrow K^{(*)}ee$, $B_s \rightarrow \phi\mu\mu$

Lepton universality ratios

$$R_{K^{(*)}}[a,b] = \frac{\int_{a}^{b} \frac{d\Gamma}{dq^{2}} (B \to K^{(*)} \mu^{+} \mu^{-}) dq^{2}}{\int_{a}^{b} \frac{d\Gamma}{dq^{2}} (B \to K^{(*)} e^{+} e^{-}) dq^{2}}$$

Form factors, 4-quark operator contributions, QED radiation cancel out to ~% level (relative to LHCb treatment)

eg Bordone, Isidori, Pattori arXiv:1605.07633

 B^0

 θ_{K^*}

37

 π^+

differential angular distribution for B->VII 3 angles, dilepton mass q²

7 angular differential observables: (A_{FB}, P₅', etc) ¹³October 20215', etc)