

Radon Background Mitigation for the SuperNEMO Experiment

Fang Xie

University College London
On behalf of the SuperNEMO collaboration

Joint Annual HEPP and APP Conference 26-28 March 2018, University of Bristol

Overview

- Radio-purity Challenges
- Radon Detectors
- Emanation Measurement
- Radon Concentration Line
- Tracker Sub-module and Gas System Measurements

Radio-purity Challenges

Electrostatic Detector

- Electro-polished stainless steel 70 litres vessel.
- -1500 V applied on the silicon PIN diode.
- Sensitive to ~0.09 mBq.

Emanation Chamber

- All detector components and construction materials are tested for their radon emanation levels.
- For small samples with large surfaces.
- Sensitivity (@90% CL): ²¹⁴Po < 0.09 mBq per sample

Emanation Measurement - Spike Method

Feedthrough Emanation Measurement

Radon Concentration Line (RnCL) Motivation

- Radiopurity target requires the detector sensitivity: ~0.01 mBq.
- Detector sensitivity: ~0.09 mBq.
- A "Radon Concentration Line" (RnCL) was developed at UCL.

Radon Concentration Line

RnCL Calibration

C-section Measurement

- The ¼ tracker (C-section) was kept in a anti-radon tent.
- A standard RnCL method measurement was carried out.
- Flush with N_2 through the RnCL trap, sampling 8.4 m³ of gas in total.
- Measurements of the first two C-Sections produced results;

C0: $11.37 \pm 1.44 \text{ mBq}$

C1: 15.26 $^{+2.5}_{-4.0}$ mBq

 A tracker component showed positive radon contribution, and was replaced during C2 and C3 construction.

C-section Measurement

- The C2 activity was measured as 4.36 ± 1.31 mBq
- Tracker activity (with C3 activity estimated as the average value for C0-C2);

 $A_T = 41.3 \pm 4.7 \text{ mBq}$ (equivalent to 2.72 ± 0.31 mBq/m³)

Input Flow m³/hr	Suppression Factor (1 + $\phi \tau / V$)	a _⊤ with tent (mBq/m³)
0.5	5.35	0.51 ± 0.06
1.0	9.71	0.28 ± 0.03
2.0	18.42	0.15 ± 0.02

Demonstrator target reached!

Gas System Measurement

- Drained of ethanol.
- Measured via Spike and RnCL methods.
- Consistent results: equivalent to
 ~10% of the tracker radon budget.

Summary

- Tracker radon radiopurity target: < 0.15 mBq/m³.
- To measure such low activities, we developed:
 - A Radon concentration line ~5 μBq/m³ with large gas volume.
 - Two high sensitivity emanation chambers
 ~0.09 mBq
- Target achieved!
- Next: tune SuperNEMO simulation to use latest activity measurements.

Backups

Radon: Decay Chain

²¹⁴Bi ($Q_β$ = 3.27 MeV) and ²⁰⁸TI ($Q_β$ = 4.99 MeV) can mimic double beta decay.

Detector Background and Sensitivity

- Measurement of detector background shows ~ 5 cpd
- Gives sensitivity of ~ 0.09 mBq (1.3 mBq/m³) @ 90% CL

Detector Calibration Different Fittings

Emanation Measurement - Spike Method

- Clean chamber and sample before insertion.
- Seal the chamber and flush with Helium for 100 volumes.
- 10+ days for emanation.
- Transfer radon carried by 25 litres of Helium into detector.

Radon Concentration Line (RnCL)

- Radiopurity target requires the detector sensitivity: ~0.01 mBq.
- Detector sensitivity: ~0.09 mBq.
- A "Radon Concentration Line" (RnCL) was developed at UCL. It use a cold carbon trap to concentrate radon.

RnCL Flow-through Calibration

RnCL: Sensitivity Estimates

- Initial measurements of carbon trap activity are ~0.23 mBq.
- Assuming a supply of gas of constant activity leads to the following sensitivity for a given volume of gas:

Radon Trap System (J-trap)

- A Radon Trap was designed and built at CPPM to minimise the source of systematics from radon contamination of carrier gas.
- Two freezers with charcoal cartridges were installed right after gas cylinder and prior to the RnCL for carrier gas pre-purification.

Suppression factor:

Helium: 5E+10

Nitrogen: ~10

C-section Measurement

- The C-section was kept in a anti-radon tent under a constant overpressure for at least 18 days for any radon harboured within detector material to decay away.
- Then the C-section volume needs to be flushed at a faster rate, required for flowthrough measurements, for at least 50 hours before it reaches equilibrium...
- Then a standard RnCL measurement was carried out. Flush with nitrogen through the RnCL trap at 7 lpm over 20 hours, sampling a total volume of 8.4 m³ of gas.

C-section Measurement

The activity inside the C-section is given by;

$$\frac{dN_T}{dt} = A_T + A_G - \lambda N_T - \frac{f_{in}N_T}{V_T} + \frac{f_{in}a_G}{\lambda}$$

where N_{T} is number of ²²²Rn atoms in tracker

A_T is intrinsic tracker activity

A_G is activity of gas supply line (1.8 mBq factor 4 reduction)

λ is radon decay constant

f_{in} is input flow rate

 a_G is activity of gas from J-trap gas (20±13 µBq/m³)

V_⊤ is tracker volume

In equilibrium, the activity in the C-section is given by;

$$a_T^{eq} = \frac{A_T + A_G + f_{in}a_G/\lambda}{V_T + f_{in}/\lambda}$$

C-section Measurement – Starting Point

 The C-section is kept under a constant overpressure with continuous gas flow for at least 18 days for any radon harboured within detector material to decay away.

- Then the C-section volume needs to be flushed at a faster rate, required for flowthrough measurements, for at least 50 hours before it reaches equilibrium...
- Finally the standard flowthrough measurement requires ~26 hours, so in total a measurement requires ~ 3 weeks.

GS Spike Measurement

- The gas system was sealed for radon build-up over 17 days.
- 214Po Activity;

 $0.69 \pm 0.11 \, \text{mBg}$

 There are some uncertainty regarding the transfer efficiency. Conservative estimate is at 35%, presuming 50% of gas is transferred from the GS with a efficiency of 70%. results in an activity of 1.97 ± 0.31 mBq.

GS RnCL Measurement

The radon activity introduced into detector is;

$$A_D = \epsilon_{tr} A_C (1 - e^{-\lambda T_C}) + \frac{\epsilon_{tr} \epsilon_T(T_f) f a_{GS}^{eq}}{\lambda} (1 - e^{-\lambda T_f}) e^{-\lambda T_{trans}}$$

where

 λ is the decay constant of ²²²Rn;

 ϵ_{tr} is the transfer efficiency;

 ϵ_T is the trapping efficiency;

 T_C is the time between clearing the trap and detector transfer (1705 min);

 T_f is the time that the line is in contact with the trap (1200 min);

 T_{trans} is the time between stopping trapping collection and detector transfer (240 min);

 A_D is the radon activity in the electrostatic detector;

 A_C is the radon activity of the carbon trap;

In equilibrium, the activity in the Gas System is given by;

$$a_{GS}^{eq} = \frac{A_{GS} + f_{in}a_G/\lambda}{V_{GS} + f_{in}/\lambda}$$

where

 f_{in} is the input flowrate of gas;

 A_{GS} is the radon activity of the gas system;

 V_{GS} is the volume of the gas system.