Neutrino Interferometry for High-Precision Tests of Lorentz Symmetry with IceCube ArXiv:1709.03434

> Find us on Facebook, "Institute of Physics Astroparticle Physics" https://www.facebook.com/IOPAPP

Neutrino Interferometry for High-Precision Tests of
Lorentz Symmetry with IceCubeArXiv:1709.03434 $\bar{\psi}\gamma_{\mu}a^{\mu}\psi$

Neutrino Interferometry for High-Precision Tests of
Lorentz Symmetry with IceCubeArXiv:1709.03434 $\bar{\psi}\gamma_{\mu}a^{\mu}\psi$

Motivation

- String theory
- Loop qunatum gravity
- Horava-Lifshitz gravity
- Lee-Wick theory
- Non-commutative field theory
- Supersymmetry, etc

Physics

- Lorentz violation
- Neutrino dark-matter coupling
- Neutrino-torsion coupling
- Neutrino velocity ≠ c
- Violation of equivalent principle
- CPT violation, etc

Neutrino Interferometry for High-Precision Tests of
Lorentz Symmetry with IceCubeArXiv:1709.03434 $\bar{\psi}\gamma_{\mu}a^{\mu}\psi$ $a^{\mu} = (a, 0, 0, 0)$

Motivation

- String theory
- Loop qunatum gravity
- Horava-Lifshitz gravity
- Lee-Wick theory
- Non-commutative field theory
- Supersymmetry, etc

Physics

- Lorentz violation
- Neutrino dark-matter coupling
- Neutrino-torsion coupling
- Neutrino velocity < c
- Violation of equivalent principle
- CPT violation, etc

Collaborators

Carlos Argüelles

MIT

Gabriel Collin

Ali Kheirandish U. Wisconsin, Madison

Shivesh Mandalia Queen Mary U. of London

Teppei Katori, Queen Mary Uni

18/03/26

1. Lorentz violating neutrino oscillation

2. Test for Lorentz violation with atmospheric neutrinos

3. Test for Lorentz violation with astrophysical neutrinos

4. Conclusion

1. Neutrino interferometry as a probe of new physics

Neutrino oscillation is an interference experiment (cf. double slit experiment)

- If 2 neutrino Hamiltonian eigenstates, v_2 and v_3 , have different phase rotation, they cause quantum interference.

1. Neutrino interferometry as a probe of new physics

Neutrino oscillation is an interference experiment (cf. double slit experiment)

- If 2 neutrino Hamiltonian eigenstates, v_2 and v_3 , have different phase rotation, they cause quantum interference (neutrino oscillation).

1. Neutrino interferometry as a probe of new physics

Neutrino oscillation is an interference experiment (cf. double slit experiment)

- If 2 neutrino Hamiltonian eigenstates, v_2 and v_3 , have different phase rotation, they cause quantum interference (neutrino oscillation).

- Any BSM physics coupling to neutrinos can contribute the phase shift of neutrino oscillation, and it appears as spectrum distortion of atmospheric neutrino data.

- The BSM effect is different with energy and baseline, so simultaneous fit of zenith and energy to find it.

Marv

University of London

Atmospheric neutrinos are the best source to test Lorentz violation within terrestrial neutrinos.

1. Lorentz violating neutrino oscillation

2. Test for Lorentz violation with atmospheric neutrinos

3. Test for Lorentz violation with astrophysical neutrinos

4. Conclusion

Kostelecky and Mewes, PRD85(2012)096005

2. Test of Lorentz violation with atmospheric neutrinos

We use 2yrs northern sky muon data to look for spectrum distortion due to Lorentz violation.

The oscillation probability is different with energy and baseline (direction), so simultaneous fit with wide energy and all direction can fit Lorentz violation parameters.

Kostelecky and Mewes, PRD85(2012)096005

2. Test of Lorentz violation with atmospheric neutrinos

We use 2yrs northern sky muon data to look for spectrum distortion due to Lorentz violation.

The oscillation probability is different with energy and baseline (direction), so simultaneous fit with wide energy and all direction can fit Lorentz violation parameters.

2. Test of Lorentz violation with atmospheric neutrinos

We use 2yrs northern sky muon data to look for spectrum distortion due to Lorentz violation.

2. Results

The main results of this paper are new limits on Lorentz violation and to demonstrate the potential of neutrino interferometry. Note, we don't know which sector has Lorentz violation, so there is no straightforward way to compare results from different sectors.

dim.	method	type	sector	limits	ref.
3	CMB polarization	astrophysical	photon	$\sim 10^{-43}~{ m GeV}$	[6]
	He-Xe comagnetometer	tabletop	neutron	$\sim 10^{-34}~{ m GeV}$	[10]
	torsion pendulum	tabletop	electron	$\sim 10^{-31}~{ m GeV}$	[12]
	muon g-2	accelerator	muon	$\sim 10^{-24}~{ m GeV}$	[13]
	neutrino oscillation	$\operatorname{atmospheric}$	neutrino	$\begin{aligned} \text{Re}(\mathring{a}^{(3)}_{\mu\tau}) , \text{Im}(\mathring{a}^{(3)}_{\mu\tau}) &< 2.9 \times 10^{-24} \text{ GeV } (99\% \text{ C.L.}) \\ &< 2.0 \times 10^{-24} \text{ GeV } (90\% \text{ C.L.}) \end{aligned}$	this work
4	GRB vacuum birefringence	astrophysical	photon	$\sim 10^{-38}$	[7]
	Laser interferometer	LIGO	photon	$\sim 10^{-22}$	[8]
	Sapphire cavity oscillator	tabletop	photon	$\sim 10^{-18}$	[5]
	Ne-Rb-K comagnetometer	tabletop	neutron	$\sim 10^{-29}$	[11]
	trapped Ca ⁺ ion	tabletop	electron	$\sim 10^{-19}$	[14]
	neutrino oscillation	$\operatorname{atmospheric}$	neutrino	$ \operatorname{Re}(\hat{c}^{(4)}_{\mu\tau}) , \operatorname{Im}(\hat{c}^{(4)}_{\mu\tau}) < 3.9 \times 10^{-28} (99\% \text{ C.L.}) < 2.7 \times 10^{-28} (90\% \text{ C.L.})$	this work
5	GRB vacuum birefringence	astrophysical	photon	$\sim 10^{-34} { m GeV^{-1}}$	[7]
	ultra-high-energy cosmic ray	astrophysical	proton	$\sim 10^{-22}$ to $10^{-18} { m GeV^{-1}}$	[9]
	neutrino oscillation	$\operatorname{atmospheric}$	neutrino	$ \operatorname{Re}(\hat{a}_{\mu\tau}^{(5)}) , \operatorname{Im}(\hat{a}_{\mu\tau}^{(5)}) < 2.3 \times 10^{-32} \text{ GeV}^{-1} (99\% \text{ C.L.}) < 1.5 \times 10^{-32} \text{ GeV}^{-1} (90\% \text{ C.L.})$	this work
6	GRB vacuum birefringene	astrophysical	photon	$\sim 10^{-31} { m GeV}^{-2}$	[7]
	ultra-high-energy cosmic ray	astrophysical	proton	$\sim 10^{-42}$ to 10^{-35} GeV ⁻²	[9]
	gravitational Cherenkov radiation	astrophysical	gravity	$\sim 10^{-31} { m GeV}^{-2}$	[15]
	neutrino oscillation	$\operatorname{atmospheric}$	neutrino	$\frac{ \operatorname{Re}(\hat{c}_{\mu\tau}^{(6)}) }{ \operatorname{Re}(\hat{c}_{\mu\tau}^{(6)}) } \stackrel{< 1.5 \times 10^{-36} \text{ GeV}^{-2} (99\% \text{ C.L.})}{< 9.1 \times 10^{-37} \text{ GeV}^{-2} (90\% \text{ C.L.})}$	this work
7	GRB vacuum birefringence	astrophysical	photon	$\sim 10^{-28} { m GeV^{-3}}$	[7]
	neutrino oscillation	$\operatorname{atmospheric}$	neutrino	$ \operatorname{Re}(\mathring{a}^{(7)}_{\mu\tau}) , \operatorname{Im}(\mathring{a}^{(7)}_{\mu\tau}) < 8.3 \times 10^{-41} \text{ GeV}^{-3} (99\% \text{ C.L.}) < 3.6 \times 10^{-41} \text{ GeV}^{-3} (90\% \text{ C.L.})$	this work
8	gravitational Cherenkov radiation	astrophysical	gravity	$\sim 10^{-46} { m GeV^{-4}}$	[15]
	neutrino oscillation	$\operatorname{atmospheric}$	neutrino	$\frac{ \operatorname{Re} \left(\hat{c}_{\mu\tau}^{(8)} \right) }{ \operatorname{Im} \left(\hat{c}_{\mu\tau}^{(8)} \right) } \lesssim 5.2 \times 10^{-45} \text{ GeV}^{-4} (99\% \text{ C.L.}) $	this work

TABLE I: Comparison of attainable best limits of SME coefficients in various fields.

2. Results

Atomic physics results dominate LV test with low dimension operators (effective field theory approach)

dim.	method	type	sector		limits		ref.
3	CMB polarization	astrophysical	photon		$\sim 10^{-43} \text{ GeV}$		[6]
	He-Xe comagnetometer	tabletop	neutron		$\sim 10^{-34} { m GeV}$		[10]
	torsion pendulum	tabletop	electron		$\sim 10^{-31}~{ m GeV}$		[12]
	muon g-2	accelerator	muon		$\sim 10^{-24} { m GeV}$		[13]
	neutrino oscillation	$\operatorname{atmospheric}$	neutrino	$ \operatorname{Re}(\mathring{a}_{\mu\tau}^{(3)}) , \mathrm{Is}$	$m(\mathring{a}^{(3)}_{\mu\tau}) \stackrel{< 2.9 \times 10^{-24} \text{ GeV}}{< 2.0 \times 10^{-24} \text{ GeV}}$	V (99% C.L.) V (90% C.L.)	this work
4	GRB vacuum birefringence	astrophysical	photon		$\sim 10^{-38}$. (0070 0.11)	[7]
-	Laser interferometer	LIGO	photon		$\sim 10^{-22}$		[8]
	Sapphire cavity oscillator	tabletop	photon		$\sim 10^{-18}$		[5]
	Ne-Rb-K comagnetometer	tabletop	neutron		$\sim 10^{-29}$		[11]
	trapped Ca ⁺ ion	tabletep	electron		$\sim 10^{-19}$		[14]
				10 (9(4))	(3.9×10^{-28})	99% C.L.)	
	neutrino oscillation	atmospheric	neutrino	$ \text{Re}\left(c_{\mu au}^{(z)} ight) $	$ \mathrm{Im}\left(c_{\mu\tau}^{(-)}\right) < 2.7 \times 10^{-28}$ (90% C.L.)	this work
5	GRB vacuum birefringer ce	astrophysical	photon		$\sim 10^{-34} { m GeV^{-1}}$		60
	Dauble meaning	astrophysical	proton		$\sim 10^{-22}$ to 10^{-18} GeV ⁻¹		GO -22
	Double gas maser	atmorphone	noutrino	$D_{0}(8^{(5)}) I_{m}$	$(5)_{11} < 2.3 \times 10^{-32} \text{ GeV}$	$-1 (9 C^{(+)})$	×10 ⁻²²
	b _n <10⁻³⁴GeV	atmospheric	neutrino	$\operatorname{Re}(a_{\mu\tau})$, III	$1(a_{\mu\tau}) \le 1.5 \times 10^{-32} \text{ GeV}$	-1 (9	
6	c _n <10 ⁻²⁹	astrophysical	photon		$\sim 10^{-21} \text{ GeV}^{-2}$		
		ast Spin to	rsion pend	ulum	Crystal oscillator		
gr		ast b.	<10 ⁻³⁰ GeV	/	∆c/c<10 ⁻¹⁸	2	
						² (9	and the second of the
	Ditter and and the second	at		·)], [III		² (9 PI B76	(1(2016))
7		ast	- APA	Contraction of the local division of the loc		T LB/C	1(2010)1
	3410 LO.	at				3 (99% C.L.)	this work
			1	, л , н		³ (90% C.L.)	this work
8 gr		ast			~		[15]
		at	No. of Lot of Lo			(99% C.L.)	this work
	PRL107(2011)171604	a		·)], [***		(90% C.L.)	tins work
	PRL112(2014)110801	PRL97	$(2006)02^{-1}$	1603			
	TABLE I: Comp	arison or attai	nable best	innus of SN	Nature.Comm.6(2015)8174	lds.	

TABLE I: Comparison of attainable best limits of SME coefficients in various fields.

2.	Results This a neutrin	nalysis set no sector.	the st	rongest limits for any order operators ir	ו
	The lir	nits are an	nong th	ne best in all sectors. In particular,	
dim.	dimen	sion-six lin	nit is u	nambiguously the strongest limit across	ef.
3	CMB polariza		int 13 ui		5]
	He-Xe comagnet all fiel	ds. This is	also m	any models predicts new physics.	0]
	torsion pendulum	tabletop	electron	10 - 24 GeV	[12]
	muon g-2	accelerator	muon	$\sim 10^{-24} \text{ GeV}$	[13]
	neutrino oscillation	$\operatorname{atmospheric}$	neutrino	$\frac{ \operatorname{Re}(\hat{a}_{\mu\tau}^{(3)}) , \operatorname{Im}(\hat{a}_{\mu\tau}^{(3)}) }{< 2.0 \times 10^{-24} \text{ GeV } (90\% \text{ C.L.})}$	this work
4	GRB vacuum birefringence	astrophysical	photon	$\sim 10^{-38}$	[7]
	Laser interferometer	LIGO	photon	$\sim 10^{-22}$	[8]
	Sapphire cavity oscillator	tabletop	photon	$\sim 10^{-18}$	[5]
	Ne-Rb-K comagnetometer	tabletop	neutron	$\sim 10^{-29}$	[11]
	trapped Ca ⁺ ion	tabletop	electron	$\sim 10^{-19}$	[14]
	neutrino oscillation	$\operatorname{atmospheric}$	neutrino	$ \operatorname{Re}(\hat{c}^{(4)}_{\mu\tau}) , \operatorname{Im}(\hat{c}^{(4)}_{\mu\tau}) \le 3.9 \times 10^{-28} (99\% \text{ C.L.}) \le 2.7 \times 10^{-28} (90\% \text{ C.L.})$	this work
5	GRB vacuum birefringence	astrophysical	photon	$\sim 10^{-34} { m GeV^{-1}}$	[7]
	ultra-high-energy cosmic ray	astrophysical	proton	$\sim 10^{-22}$ to $10^{-18} { m GeV^{-1}}$	[9]
	neutrino oscillation	$\operatorname{atmospheric}$	neutrino	$\begin{aligned} \operatorname{Re}(\hat{a}_{\mu\tau}^{(5)}) , \operatorname{Im}(\hat{a}_{\mu\tau}^{(5)}) &< 2.3 \times 10^{-32} \text{ GeV}^{-1} (99\% \text{ C.L.}) \\ &< 1.5 \times 10^{-32} \text{ GeV}^{-1} (90\% \text{ C.L.}) \end{aligned}$	this work
6	GRB vacuum birefringene	astrophysical	photon	$\sim 10^{-31} { m GeV}^{-2}$	[7]
	ultra-high-energy cosmic ray	astrophysical	proton	$\sim 10^{-42}$ to 10^{-35} GeV ⁻²	[9]
	gravitational Cherenkov radiatio	n astrophysical	gravity	$\sim 10^{-31} \text{ GeV}^{-2}$	[15]
	neutrino oscillation	$\operatorname{atmospheric}$	neutrino	$ \operatorname{Re}(\hat{c}_{\mu\tau}^{(6)}) , \operatorname{Im}(\hat{c}_{\mu\tau}^{(6)}) < 1.5 \times 10^{-36} \text{ GeV}^{-2} (99\% \text{ C.L.}) < 9.1 \times 10^{-37} \text{ GeV}^{-2} (90\% \text{ C.L.})$	this work
7	GRB vacuum birefringence	astrophysical	photon	$\sim 10^{-28} { m GeV^{-3}}$	[7]
	neutrino oscillation	$\operatorname{atmospheric}$	neutrino	$\begin{aligned} \operatorname{Re}\left(\overset{\scriptscriptstyle 0}{a}{}^{(7)}_{\mu\tau}\right) , \operatorname{Im}\left(\overset{\scriptscriptstyle 0}{a}{}^{(7)}_{\mu\tau}\right) &< 8.3 \times 10^{-41} \text{ GeV}^{-3} (99\% \text{ C.L.}) \\ &< 3.6 \times 10^{-41} \text{ GeV}^{-3} (90\% \text{ C.L.}) \end{aligned}$	this work
8	gravitational Cherenkov radiatio	n astrophysical	gravity	$\sim 10^{-46} { m GeV^{-4}}$	[15]
	neutrino oscillation	atmospheric	neutrino	$ \operatorname{Re}(\hat{c}_{\mu\tau}^{(8)}) , \operatorname{Im}(\hat{c}_{\mu\tau}^{(8)}) < 5.2 \times 10^{-45} \text{ GeV}^{-4} (99\% \text{ C.L.}) < 1.4 \times 10^{-45} \text{ GeV}^{-4} (90\% \text{ C.L.})$	this work

TABLE I: Comparison of attainable best limits of SME coefficients in various fields.

- **1. Lorentz violating neutrino oscillation**
- 2. Test for Lorentz violation with atmospheric neutrinos

3. Test for Lorentz violation with astrophysical neutrinos

4. Conclusion

3. Test of Lorentz violation with astrophysical neutrinos

Combination of longer baseline and higher energy makes astrophysical neutrino to be the most sensitive source of fundamental physics. For this, flavors of astrophysical neutrinos are very important and we are working on that.

Shivesh Mandalia (Next talk) "Search for New Physics in Astrophysical neutrino Flavor at IceCube"

Teppei Katori, Queen Mary University of London

18/03/26

IceCube-Gen2,arXiv:1412.5106;1510.05228

3. IceCube-Gen2

Bigger IceCube and denser DeepCore can push their physics

Gen2

Larger string separations to cover larger area

PINGU

Smaller string separation to achieve lower energy threshold for neutrino mass hierarchy measurement

PINGU

3. IceCube-Gen2

Ice is clear than we thought

→ larger separation (125m → ~200-300m) to cover larger volume - 120 new strings with 80 DOMs, 240 m separation, x10 coverage

Dark Sector **Clean Air Sector** 3000 pDOM - Improved IceCube DOM 2000 position offset w.r.t. IceCube center (m) - baseline design 1000 Penetrator PMT Base **HV Supply** H LTL TIME LED Flashers Main Board **Delay Board** Pole Waist Band -1000**Pressure Sphere** South Mu-metal cage Silicone Gel õ -2000 PMT Photocathode Skiway IceCube Gen2 KEY: DOM Component identical DOM -3000**Component eliminated** Downwind Sector **Quiet Sector** Component redesigned 1000 -2000-10000 2000 position offset w.r.t. IceCube center (m) lueen Mary Teppei Katori, Queen Mary University of London 18/03/26 University of London

21

3. IceCube-Gen2

Ice is clear than we thought

 \rightarrow larger separation (125m \rightarrow ~200-300m) to cover larger volume

- 120 new strings with 80 DOMs, 240 m separation, x10 coverage
- Variety of new detectors are under development

mDOM

- KM3NeT style
- direction sensitive

University of London

D-Eggs

- 8-inch high-QE PMTs
- cover both sky
- cleaner glass window

WOM

- Scintillator light guide
- cheaper per coverage
- small diameter

3. IceCube-Gen2

Ice is clear than we thought

- \rightarrow larger separation (125m \rightarrow ~200-300m) to cover larger volume
- 120 new strings with 80 DOMs, 240 m separation, x10 coverage
- Variety of new detectors are under development
- Variety of new surface array are under development

IceACT

- air Cherenkov telescope
- larger coverage with fewer stations
- prototype is installed at South Pole

Teppei Katori, Queen Mary University of London

Scintillator panels

- cheaper coverage per area
- easy deployment

23

18/03/26

3. IceCube-Gen2 Phase-1

Ice is clear than we thought

- \rightarrow larger separation (125m \rightarrow ~200-300m) to cover larger volume
- 120 new strings with 80 DOMs, 240 m separation, x10 coverage
- Variety of new detectors are under development
- Variety of new surface array are under development

Phase 1 proposal will be submitted in Fall 2018

- 7 new strings for low energy physics
- Test new calibration device for high energy physics

Teppei Katori, Queen Mary University of London

1000m

Conclusion

Lorentz and CPT violation has been shown to occur in Planck-scale theories. There is a world wide effort to test Lorentz violation with various state-of-the-art technologies.

Future IceCube-Gen2 may dramatically improve the astrophysical neutrino flavour information, and has a real discovery potential of new physics.

backup

3. Test of Lorentz violation with astrophysical neutrinos

Combination of longer baseline and higher energy makes astrophysical neutrino to be the most sensitive source of fundamental physics.

Astrophysical neutrinos are not coherent and we cannot study Lorentz violation using neutrino oscillations (cf. atmospheric neutrinos).

$$P_{\alpha \to \beta}(L) = 1 - 4\sum_{i>j} Re(V_{\alpha i}^* V_{\beta i}^* V_{\alpha j} V_{\beta j}) sin^2\left(\frac{\Delta_{ij}}{2}L\right) + 2\sum_{i>j} Re(V_{\alpha i}^* V_{\beta i}^* V_{\alpha j} V_{\beta j}) sin(\Delta_{ij}L)$$

However, incoherent neutrino mixings of astrophysical neutrinos also carry information of tiny Lorentz violation. This is a different type of neutrino interferometry.

$$P_{\alpha \to \beta}(L \to \infty, E) = \sum_{i>j} |V_{\alpha i}|^2 |V_{\beta i}|^2$$

IceCube-Gen2,arXiv:1412.5106;1510.05228 Kowalski (Gen2), IPA2017

8. IceCube-Gen2

Ice is clear than we thought

- \rightarrow larger separation (125m \rightarrow ~200-300m) to cover larger volume
- 120 new strings with 80 DOMs, 240 m separation, x10 coverage
- Variety of new detectors are under development
- Variety of new surface array are under development

Physics

- ν_τ appearance, PMNS matrix unitary
- Neutrino mass ordering (PINGU)
- WIMP search
- Point source
- UHE tau-neutrino
- Nail down production mechanism, etc...
- ...and, discover new physics!

17/11/01

