Phys. Rev. X 7, 041034 (2017)

nEDM as a Dark Matter Detector

Nicholas Ayres, University of Sussex on behalf of the PSI nEDM collaboration With: Michał Rawlik, ETH Zürich M. Fairbairn, D.J.E. Marsh, Kings College London V.V. Flambaum, University of New South Wales Y.V. Stadnik, Johannes Gutenberg Universität Mainz

Outline

- Intro to the Neutron Electric Dipole Moment
- Axions and ALPs as Dark Matter, and why an EDM might oscillate
- Analysis
- Results

The Neutron EDM

- Nonzero EDM violates P,T
- Static EDM measured since 1951, with developments ongoing worldwide
- SM nEDM: <10⁻³¹ e cm (CKM)
- BSM CPv new physics can cause large enhancements
- Current limit 3x10⁻²⁶ e cm

How to Measure an EDM

Search for a shift in the NMR frequency under an electric field

Two Sister Experiments

Sussex-RAL-ILL Experiment Holds Current World Limit... PRL 97, 131801 PRD 92, 092003

nEDM Experiment at PSI ...New Result Soon

Hyperfine Interact (2016) 237: 142 Physics Proceedia (2011) 17, 159-167

nEDM at PSI Experiment

Axions as Dark Matter

- Ultralight axions m~10⁻²²-10⁻¹⁷eV can be DM
- Acts like coherently oscillating classical field with frequency ~ mass
 - 10⁻²² eV => 1 inverse year
- Strategy: Assume all dark matter is axions, and try to measure couplings between these axions and neutrons

Axion-Neutron interactions

 $\mathcal{L} = \frac{C_G}{f_a} \frac{g^2}{32\pi^2} a G^b_{\mu\nu} \tilde{G}^{b\mu\nu} + \frac{C_N}{2f_a} \partial_\mu a \overline{N} \gamma^\mu \gamma^5 N$

Axion-gluon coupling Induces neutron EDM oscillation through same mechanism as QCD theta

$$\mathcal{L} = \frac{g^2}{32\pi^2} \theta G^b_{\mu\nu} \tilde{G}^{b\mu\nu}$$

- 2 Analyses:
 - Systematics compensated data from ILL (binned by B field config) – time series of measured EDM
 - All individual (5 min) cycles from PSI (field driftcompensated)
- Extract power spectrum using Least Squares Spectral Analysis
- Monte Carlo to find probability distributions
- Use CL_S technique for exclusions

Least Squares Spectral Analysis

• Fit for each ω :

 $d_n(t) = A\cos\omega t + B\sin\omega t$

 Equivalent to Fourier transform, but allows uneven time spacing and errors

LSSA of ILL Data

Monte Carlo

- Generate fake data (Gaussian noise with same timings as data) and do Least Squares Spectral Analysis
- Analyse for each frequency
- Fit expected exponential distribution to extrapolate to unlikely events

Analysis of the PSI data

- For each cycle, estimate neutron frequency
- Analyse time series of neutron frequency, sorted by E and B field
- Add free offset to each magnetic field configuration to account for all systematics
- Can access axion-nucleon coupling and varying EDM

ILL and PSI Exclusion

ILL and PSI Exclusion

-FED

PSI: Axion-Nucleon Coupling

Conclusion:

- Null result
- First laboratory limits on axion-gluon coupling, improving upon limits from astrophysics by up to 3 orders of magnitude
- 40x better than previous lab limits on axionnucleon coupling
- Paper: Phys Rev X 7, 041034

Backup Slides

Paper: Search for axion-like dark matter through nuclear spin precession in electric and magnetic fields, C. Abel et. al. Phys Rev X 7, 041034 (2017)

Further Reading

- Search for axion-like dark matter through nuclear spin precession in electric and magnetic fields, C. Abel et. al. Phys Rev X 7, 041034 (2017)
- Axion dark matter detection with cold molecules, P. W. Graham and S. Rajendran, Phys. Rev. D 84, 055013 (2011).
- New Observables for Direct Detection of Axion Dark Matter P.W. Graham and S. Rajendran, Phys Rev D 88, 035023 (2013)
- Axion-induced effects in atoms, molecules, and nuclei: Parity nonconservation, anapole moments, electric dipole moments, and spin-gravity and spin-axion momentum couplings, Y. V. Stadnik and V. V. Flambaum, Phys. Rev. D 89, 043522 (2014).
- Proposal for a cosmic spin axion spin precession experiment (CASPEr) D. Budker, P. W. Graham, M. Ledbetter, S. Rajendran, and A. O. Sushkov, Phys. Rev. X 4, 021030 (2014).

Look Elsewhere and False Alarm

- Expect 5% false positives for P=0.05, but we test thousands of hypotheses frequencies
- Solution: inflate required p-values

$$P_{\text{global}} = 1 - (1 - P_{\text{local}})^{N_{\text{effective}}}$$

ILL Detection

Axion-Photon Coupling

Most experimental limits on axions apply to the coupling to photons

Fig 61.1 from PDG RPP -C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update.

How to Measure an nEDM

UNIVERSITY OF SUSSEX

nedm

Apparatus ILL and PSI

OF SUSSEX

Data Preparation-ILL

- Classic Sussex-RAL-ILL analysis technique
- Use $R = \frac{v_n}{v_{Hg}}$ as gradiometer to compensate false EDM
- Fit Crossing Lines
- Subtract fit from data to analyse EDM residuals

PSI Effect of Gradient Drift Correction

Inter-cycle drifts in vertical gradient were corrected with Cs magnetometers.

We expect peaks at 28µHz (inverse of 10 hours) and 3.3mHz (inverse of 300 seconds) due to patterns in datataking.

PSI Analysis Detection

Agreement of the E=0 dataset with the null hypothesis

- (7-E-1

PSI Analysis Detection

PSI Analysis Detection

PSI MC: cumulative distribution function extrapolation for one frequency

PSI MC: distribution of the global minimal p-value

Exclusion

- Define $CL_S = CL_{S+B} / CL_B$
- Avoids claiming exclusion where we are not sensitive
- Black = Excluded

Example CL_S Exclusion

Without CL_S Correction Unphysically strong exclusion around 10⁻³ days⁻¹

