

Latest Muon Neutrino Disappearance Results From The NOvA Experiment

Diana Patricia Méndez Méndez University of Sussex For the NOvA Collaboration

IOP Meeting | Bristol, UK | March 26th 2018

Neutrino oscillation experiment

- v_{μ} disapperance $(v_{\mu} \rightarrow v_{\mu})$ v_{e} appearance $(v_{\mu} \rightarrow v_{e})$

Neutrino oscillation experiment

• V_{μ} disapperance $(V_{\mu} \rightarrow V_{\mu})$

•
$$V_e$$
 appearance $(V_{\mu} \rightarrow V_e)$

Two detectors separated by 810 km

- Near detector 300 Tons, underground
- Far detector 14 kTons, on the surface

Neutrino oscillation experiment

Far Detector

MN

• V_{μ} disapperance ($V_{\mu} \rightarrow V_{\mu}$)

•
$$V_e$$
 appearance $(V_\mu \rightarrow V_e)$

Two detectors separated by 810 km

- Near detector 300 Tons, underground
- Far detector 14 kTons, on the surface

Neutrino source

- NuMI beam from Fermilab
- 14 mrad off-axis
- Narrow energy spectrum, peak ~ 2 GeV

MI

IL

2017 Results

Phys.Rev.Lett. 118, 151802 (2017)

Clear V_{μ} disappearance

- 473 expected events without oscillations
- 78 observed events in the far detector
- 82 expected events at best fit

Oscillation parameters

• $\Delta m_{32}^2 = (2.67 \pm 0.11) \times 10^{-3} \text{ eV}^2$

•
$$\sin^2\theta_{23} = 0.404^{+0.030}_{-0.022},$$

 $0.624^{+0.022}_{-0.030}$

• 6e20 POT

- Separate neutrino events into bins of resolution
- Hybrid of two selection algorithms
- Finer energy binning around maximum oscillation

$E_v = E_{\mu} + E_{had} \rightarrow Neutrino energy resolution = E_{Had}/E_v$

Mean resolution:

- Muon energy = 3.5 %•
- Hadronic energy = 40%٠
- Neutrino energy = 9%•

 $E_v = E_\mu + E_{had} \rightarrow Neutrino energy resolution =$

Mean resolution:

- Muon energy = 3.5 %
- Hadronic energy = 40%
- Neutrino energy = 9%

Hadronic fraction = 0.25 \rightarrow Uncertainty = 10.0%

 $E_{\mu} = 1.5 \pm 0.06 \text{ GeV}$ $E_{had} = 0.5 \pm 0.2 \text{ GeV}$

Mean resolution:

- Muon energy = 3.5 %
- Hadronic energy = 40%
- Neutrino energy = 9%

Hadronic fraction = 0.25 \rightarrow Uncertainty = 10.0%

$$\begin{split} & \textbf{E}_{\mu} = 1.5 \pm 0.06 \text{ GeV} \\ & \textbf{E}_{had} = 0.5 \pm 0.2 \text{ GeV} \end{split}$$

Hadronic fraction = 0.75 → Uncertainty = 30%

$$\begin{split} {\sf E}_{\mu} &= 0.5 \pm 0.018 \; {\sf GeV} \\ {\sf E}_{had} &= 1.5 \pm 0.6 \; {\sf GeV} \end{split}$$

 $E_v = E_{\mu} + E_{had} \rightarrow Neutrino energy resolution = E_{Had}/E_v$

Separate well resolved energies by quantiles of hadronic energy fraction

1. Take an energy bin

 $E_v = E_{\mu} + E_{had} \rightarrow Neutrino energy resolution = E_{Had}/E_v$

 $E_{\nu} = E_{\mu} + E_{had} \rightarrow Neutrino energy resolution = E_{Had}/E_{\nu}$

 $E_{\nu} = E_{\mu} + E_{had} \rightarrow Neutrino energy resolution = E_{Had}/E_{\nu}$

Hybrid of two selection algorithms

(and retuned cosmic BDT) background rejection with 11% more selected signal

Particle identification

Hybrid of two selection algorithms

(and retuned cosmic BDT) background rejection with 11% more selected signal

Reconstructed Muon Identification

Particle identification

Hybrid of two selection algorithms

(and retuned cosmic BDT) background rejection with 11% more selected signal

Reconstructed Muon Identification

Convolusional Visual Network

Particle identification

ReMId good at identifying muon tracks. kNN (k-Nearest Neighbour) with

- Track length
- dE/dx
- Scattering
- Plane fraction

CVN More advanced algorithm to separate NuE-CC and NC

- Based on CNN (Convolutional Neural Networks)
- Treats events as images
- Extracts features

Energy Binning

Finer binning around the maximum oscillation region enhances the sensitivity of the analysis

Energy Binning

Finer binning around the maximum oscillation region enhances the sensitivity of the analysis

NOvA 2017 binning

Standard energy binning: 20 bins of 0.25 GeV each

Energy Binning

Finer binning around the maximum oscillation region enhances the sensitivity of the analysis

• 3 analysis improvements +

- 3 analysis improvements +
 - Data

50% more than the previous analysis, from 6×10^{20} POT to $\sim 9 \times 10^{20}$ POT

- 3 analysis improvements +
 - Data

50% more than the previous analysis, from 6×10^{20} POT to $\sim 9 \times 10^{20}$ POT

Fermilab's NuMI beam, world's most powerful at 700kW

• 3 analysis improvements +

• Data

50% more than the previous analysis, from 6x10²⁰ POT to ~9x10²⁰ POT Fermilab's NuMI beam, world's most powerful at 700kW

• Cross sections

Retuned model for multi nucleon processes

- Detector simulation
- Flux

Muon Neutrino Disappearance Results with 8.85x10²⁰ POT

Muon Neutrino Disappearance 8.85x10²⁰ POT

- 763 expected events without oscillations
- 126 observed events in the far detector
- 129 expected events at best fit

Muon Neutrino Disappearance 8.85x10²⁰ POT

Muon Neutrino Disappearance 8.85x10²⁰ POT

NOvA Preliminary

Joint Analysis Disappearance - Appearance 8.85x10²⁰ POT

Joint Analysis Disappearance - Appearance 8.85x10²⁰ POT

Previous rejection of maximal mixing with 2.6 σ

More recent result down to:

- 1.8 σ from new simulation and calibration
- 0.5 σ from new selection and analysis
- 0.4 σ from new data

Summary

With 8.85x10²⁰POT exposure and a clear V_{μ} disappearance

- Significant improvement to the analysis
- Competitive measurement of Δm_{32}^2
- Preference to mixing angle near maximal

MINOS Phys. Rev. Lett. 112, 191801 (2014), Ice-Cube Phys. Rev. Lett. 120, 071801 (2018) T2K Phys. Rev. D 96, 092006 (2017), SK arXiv:1710.09126

March 26th 2018 - IOP Meeting

Diana Patricia Mendez

Summary

All together as friends!

MINOS Phys. Rev. Lett. 112, 191801 (2014), Ice-Cube Phys. Rev. Lett. 120, 071801 (2018) T2K Phys. Rev. D 96, 092006 (2017), SK arXiv:1710.09126

March 26th 2018 - IOP Meeting

Diana Patricia Mendez

Expect new results with antineutrinos in Neutrino 2018

BACKUP

Event topology

March 26th 2018 - IOP Meeting

Event topology

March 26th 2018 - IOP Meeting

Diana Patricia Mendez

Event topology

р Largest background, cosmic and 2.8 Max. mix. rej. neutral current events, in the 2.7 worst energy resolution (highest 2.6 hadronic energy quantile). 2.5 2.4 GeV Events / 0.1 GeV owest E_{had}/E_v quantile 2nd lowest E_{bod}/E_v quantile Events / 0.1 (2nd highest E_{bad}/E_v quantile 10 Highest E ____/E _ quantile Cosmics 0.15 0.

2

3

Reconstructed Neutrino Energy (GeV)

Binning

 \triangleright

the NOvA baseline.

--- Max. mix. pred
--- Bkg. pred.

10

Events

Pred/Max. mix.

0.4

Energy Binning

Finer binning around the maximum oscillation region could enhance the sensitivity of the analysis

- NOvA' standard energy binning: 20 bins of 0.25 GeV each
- Optimum binning: increased number of bins between 1 and 3 GeV

Reconstructed neutrino energy (GeV)

No oscillations

Electron Neutrino Appearance 8.85x10²⁰ POT

NOvA Preliminary

- 66 observed events in the far detector
- 20.5 +-2.5 bkg events

Electron Neutrino Appearance 8.85x10²⁰ POT

- 66 observed events in the far detector
- 20.5 +-2.5 bkg events

Uncertainties

Combination of the improvements reduces uncertainties and increases NOvA's sensitivity:

- Systematic uncertainties reduced from 2.2% to 2.0% on $\Delta\,{\rm m^2}_{32}$ and from a 2.1% to 1.5% on $\sin^2\theta_{~23}$

Improved v_{μ} Selection

Improved v_{μ} Selection

