Supernova Neutrino Simulations in Hyper-Kamiokande

The University Of Sheffield.

IOP HEPP/APP 2018 27 March 2018

@JostMigenda

3rd Generation Water Cherenkov Detector

Kamiokande

1983-1996

Super-Kamiokande 1996–today (and beyond)

Hyper-Kamiokande

~2026_ppp

Koshiba, 2002

Kajita, 2015

ppp, 20pp

→ Hyper-K Design Report: <u>hyperk.org/?p=215</u> 2

3rd Generation Water Cherenkov Detector

Kamiokande

Super-Kamiokande Hyper-Kamiokande

1983–1996

1996–today (and beyond)

3 kton

~2026_ppp

3rd Generation Water Cherenkov Detector

Kamiokande Super-Kamiokande Hyper-Kamiokande 1983-1996

1996-today (and beyond)

~2026_ppp

3 kton

50 kton

Supernova ve Burs

- at 10 kpc: 50 k 80 k events per tank (hierarchy-dependent) in ~10 s
- precise event-by-event
 time & energy information
- → detailed information on SN explosion mechanism (e.g. SASI)
- most sensitive to $\overline{\nu}_e$ (~90% inverse beta decay on H)
- directionality: ~1° (via v+e-scattering)

Supernova Simulation Toolchain Overview

→ <u>https://github.com/JostMigenda/sntools</u>

sntools Overview

genevts.py:

 handle options (detector, I/O file names, interaction channels, **mass** hierarchy)

all

etc.

→ <u>https://github.com/JostMigenda/sntools</u>

sntools Overview

genevts.py:

- handle options

 (detector, I/O file names, interaction channels, mass
 hierarchy)
- call helper script ...

Supernova simulation

etc.

→ https://github.com/JostMigenda/sntools

sntools Overview

genevts.py:

- handle options

 (detector, I/O file names, interaction channels, mass
 hierarchy)
- call helper script ...
- output in Nuance format

Supernova simulation

hk-BONSAI

etc.

→ https://github.com/JostMigenda/sntools

sntools Overview

genevts.py:

- handle options

 (detector, I/O file names, interaction channels, mass
 hierarchy)
- call helper script ...
- output in Nuance format

Supernova simulation

channel.py:ce-format file

- read in v flux
- calculate event count per bin
- generate event times, energies, directions
- write raw event info to tmp file
- 1 "plugin" per neutrino flux or interaction channel

→ https://github.com/JostMigenda/sntools

sntools Overview

genevts.py:

- handle options

 (detector, I/O file names, interaction channels, mass
 hierarchy)
- call helper script ...
- output in Nuance format

"Plugins":

- neutrino flux: different input file formats, energy spectrum
- interaction channel: differential cross section, directionality, energy threshold, ...

channel.py:ce-format file

- read in v flux
- calculate event count per bin
- generate event times, energies, directions
- write raw event info to tmp file
- 1 "plugin" per neutrino flux or interaction channel

Inverse Beta Decay

- cross section: Strumia/Vissani, arXiv:astro-ph/0302055
- NLO in E_v/m_p , radiative corrections

Table 2

Percentage difference between our full result and various approximations for $\bar{\nu}_e$ (above) and ν_e (below) total cross-sections. A negative (positive) sign means that a certain cross-section is an over(under)-estimate. It is easy to implement approximations made with $\star \star \star$, while implementing those marked with a \star is not much simpler than performing a full computation

	E_{ν} , MeV		2.5	5	10	20	40	80	160
Percentage difference in $\sigma(\bar{\nu}_e p \rightarrow n\bar{e})$									
(1)	Naïve	* * *	-3.9	-5.8	-9.9	-19	-38	-84	-210
(2)	Naïve+	* * *	0	0.3	-0.2	0.4	0.2	0.5	-0.9
(3)	Vogel and Beacom	**	0	0	0.3	1.2	5.6	28	150
(4)	NLO in E_v/m_p	*	0	0	0	0	0.1	1.5	13

Elastic Scattering

Thanks to Liz Kneale!

- Bahcall et al. 1995, arXiv:astro-ph/9502003 (appendices A, B)
 - incl. EW & QED corrections
 - for V_{e} , \overline{V}_{e} , V_{x} , \overline{V}_{x} (x stands for μ or τ)

$$\begin{aligned} \frac{d\sigma}{dT} &= \frac{2G_F^2 m}{\pi} \Biggl\{ g_L^2(T) \left[1 + \frac{\alpha}{\pi} f_-(z) \right] \\ &+ g_R^2(T) (1-z)^2 \left[1 + \frac{\alpha}{\pi} f_+(z) \right] \\ &- g_R(T) g_L(T) \frac{m}{q} z \left[1 + \frac{\alpha}{\pi} f_{+-}(z) \right] \Biggr\} \end{aligned}$$

 $g_L^{(\nu_e,e)}(T) = \rho_{NC}^{(\nu,l)} [\frac{1}{2} - \hat{\kappa}^{(\nu_e,e)}(T) \sin^2 \hat{\theta}_W(m_Z)] - 1$ $g_R^{(\nu_e,e)}(T) = -\rho_{NC}^{(\nu,l)} \hat{\kappa}^{(\nu_e,e)}(T) \sin^2 \hat{\theta}_W(m_Z) ,$

v_e + Oxygen CC

Thanks to Owen Stone!

- based on theoretical calculation Kolbe *et al.* (2002), PRD **66**, 013007
- schematic fit:

Tomas et al. 2003, arXiv:hep-ph/0307050 (Appendix B.3)

$$\sigma \left(\nu_e + {}^{16}\text{O} \to \text{X} + e^-\right) =$$

$$4.7 \times 10^{-40} \text{ cm}^2 \left[\left(\frac{E_{\nu}}{\text{MeV}}\right)^{1/4} - 15^{1/4} \right]^6$$

we limit our investigation to a schematic implementation of this process where we assume that in every reaction the final-state energy is $E_e = E_{\nu} - 15$ MeV. For the angular distribution we assume

$$\frac{d\sigma}{d\cos\vartheta} = 1 - \frac{1 + (E_e/25 \text{ MeV})^4}{3 + (E_e/25 \text{ MeV})^4}\cos\vartheta, \qquad (B7)$$

9

v_e + Oxygen CC

Thanks to Owen Stone!

- based on theoretical calculation Kolbe *et al.* (2002), PRD **66**, 013007
- schematic fit:

Tomas et al. 2003, arXiv:hep-ph/0307050 (Appendix B.3)

$$\sigma \left(\nu_e + {}^{16}\text{O} \to \text{X} + e^-\right) =$$
$$\times 10^{-40} \text{ cm}^2 \left[\left(\frac{E_\nu}{\text{MeV}}\right)^{-15} - \frac{15}{11.4} \right]^{-15}$$

we limit our investigation to a schematic implementation of this process where we assume that in every reaction the final-state energy is $E_e = E_{\nu} - 15$ MeV. For the angular distribution we assume 11.4

$$\frac{d\sigma}{d\cos\vartheta} = 1 - \frac{1 + (E_e/25 \text{ MeV})^4}{3 + (E_e/25 \text{ MeV})^4}\cos\vartheta, \qquad (B7)$$

• \overline{v}_e + Oxygen CC: same, but with custom fit parameters

Event generation

- is fast: In ~10 min, on my laptop ...
 - 80k IBD events (1–1.5× SN@10kpc in 220kt)
 - 16k ES events (6–8×)
 - 200k v_e O events (50–2500×)
 - 200k $\overline{\nu}_e$ O events (50–300×)
- is precise:
 - IBD/ES cross-section: ~1% precision
 - ν+Oxygen CC: ~10% ???
 - still much smaller than the differences between SN models → → →

Comparison of Supernova Simulations

Comparison of Supernova Simulations

Summary

- Hyper-K is the next step in the very successful Japanbased neutrino research programme & will observe ~10⁵ events from next galactic supernova.
- Developed a new supernova event generator that's
 - **fast** (<15 min to generate signal from a fiducial SN in 1 HK tank)
 - **precise** (~1% level for two main interaction channels)
 - modular & extensible (currently supports 4 interaction channels and 3 input formats, need just ~100 lines of code to add more)
 - Open SOURCe (see https://github.com/JostMigenda/sntools)
- Investigate model separation ability of Hyper-Kamiokande

Backup Slides

Status of Hyper-K

- Proto-Collaboration formed in 2015
 - now: 300 people in 15 countries New members welcome!
- published Design Report and White Paper for 2nd tank in Korea in 2016

Timeline for 1st tank (2nd tank up to 6 years later)

ICEN Proprint 2015-51 ICED Propert-708-5105

Design Report (htery 7, 205)

KEK Preprint 2016-21 ICRR-Report-701-2016-1

http://hyperk.org/?p=215

14

Changes for Low-E Physics

- lower overburden → 2.7× higher spallation background
 - 2nd tank in Korea would have SK-like overburden
- new PMTs with 2× timing resolution and 2× photon detection efficiency
 - better energy/vertex reconstruction → lower bkgd & enhanced physics capabilities
 - lower energy threshold
 - R&D is still ongoing (e.g. mPMTs – MoU with KM3NeT)
- build on experiences of SK-Gd

